Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T19:04:35.994Z Has data issue: false hasContentIssue false

Environmental Effects on the Single Molecule Conductance of bis(thiahexyl)oligothiophenes

Published online by Cambridge University Press:  31 January 2011

Edmund Leary
Affiliation:
edmund.leary@imdea.org, University of Liverpool, Department of Chemistry, Liverpool, United Kingdom
Horst Höbenreich
Affiliation:
hoebenreich@googlemail.com, University of Liverpool, Department of Chemistry, Liverpool, United Kingdom
Simon J. Higgins
Affiliation:
shiggins@liv.ac.uk, University of Liverpool, Department of Chemistry, Liverpool, United Kingdom
Harm van Zalinge
Affiliation:
vzalinge@liverpool.ac.uk, University of Liverpool, Department of Chemistry, Liverpool, United Kingdom
Wolfgang Haiss
Affiliation:
haiss@liverpool.ac.uk, University of Liverpool, Department of Chemistry, Liverpool, United Kingdom
Richard J. Nichols
Affiliation:
R.J.Nichols@liverpool.ac.uk, University of Liverpool, Department of Chemistry, Liverpool, United Kingdom
Christopher Finch
Affiliation:
c.m.finch@lancaster.ac.uk, University of Lancaster, Department of Physics, Lancaster, United Kingdom
Iain Grace
Affiliation:
i.grace@lancaster.ac.uk, University of Lancaster, Department of Physics, Lancaster, United Kingdom
Colin J. Lambert
Affiliation:
c.lambert@lancaster.ac.uk, University of Lancaster, Department of Physics, Lancaster, United Kingdom
Get access

Abstract

Simple alkanedithiols exhibit the same molecular conductance whether measured in air, under vacuum or under liquids of different polarity. Here, we show that the presence of water ‘gates’ the conductance of a family of oligothiophene–containing molecular wires, and that the longer the oligothiophene, the larger is the effect; for the longest example studied, the molecular conductance is over two orders of magnitude larger in the presence of water, an unprecedented result suggesting that ambient water is a crucial factor to be taken into account when measuring single molecule conductances (SMC), or in the design of future molecular electronic devices. Theoretical investigation of electron transport through the molecules, using the ab initio non-equilibrium Green's function (SMEAGOL) method, shows that water molecules interact with the thiophene rings, shifting the transport resonances enough to increase greatly the SMC of the longer, more conjugated examples.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Li, X. L. He, J. Hihath, J. Xu, B. Q. Lindsay, S. M. and Tao, N. J. J. Am. Chem. Soc. 128, 21352141 (2006).Google Scholar
2 Rocha, A. R. Garcia-Suarez, V. M., Bailey, S. Lambert, C. Ferrer, J. and Sanvito, S. Phys. Rev. B 73, 085414 (2006).Google Scholar
3 Haiss, W. H. van Zalinge, Higgins, S. J. Bethell, D. Höbenreich, H., Schiffrin, D. J. and Nichols, R. J. J. Am. Chem. Soc. 125, 1529415295 (2003).Google Scholar
4 Leary, E. Higgins, S. J. Zalinge, H. van, Haiss, W. Nichols, R. J. Jeppesen, J. O. Nygaard, S. and Ulstrup, J. J. Am. Chem. Soc. 130, 1220412205 (2008).Google Scholar
5 Leary, E. Higgins, S. J. Zalinge, H. van, Haiss, W. and Nichols, R. J. Chem. Comm. 3939-3942 (2007).Google Scholar
6 Chang, L. L. Esaki, L. and Tsu, R. Appl. Phys. Lett., 24, 593595 (1974).Google Scholar
7 Skotheim, T. A. and Reynolds, J. R. eds., Handbook of Conducting Polymers Third Edition, Taylor and Francis Group, Boca Raton, 2007.Google Scholar
8 McCulloch, I. Heeney, M. Bailey, C. Genevicius, K. Macdonald, I. Shkunov, M. Sparrowe, D. Tierney, S. Wagner, R. Zhang, W. M. Chabinyc, M. L. Kline, R. J. McGehee, M. D. and Toney, M. F. Nature Materials 5, 328 (2006).Google Scholar
9 Soler, J. M. Artacho, E. Gale, J. D. Garcia, A. Junquera, J. Ordejon, P. and Sanchez-Portal, D., J. Phys-Condens. Mat. 14, 27452779 (2002).Google Scholar
10 Kuznetsov, A. M. and Ulstrup, J. Electron Transfer in Chemistry and Biology: An Introduction to the Theory, John Wiley, Chichester, U.K., 1999.Google Scholar
11 Haiss, W. Martín, S., Leary, E. Zalinge, H. van, Higgins, S. J. Bouffier, L. and Nichols, R. J. J. Phys. Chem. C 2009, 113, 58235833.Google Scholar
12 Rocha, A. R. Garcia-Suarez, V. M., Bailey, S. W. Lambert, C. J. Ferrer, J. and Sanvito, S. Nature Materials 4, 335339 (2005).Google Scholar
13 Meng, S. C. Ma, J. and Jiang, Y. S. J. Phys. Chem. B 111, 41284136 (2007).Google Scholar
14 Gray, H. B. and Winckler, J. R. Q. Rev. Biophys. 36, 341 (2003).Google Scholar
15 Lin, J. P. Balabin, I. A. and Beratan, D. N. Science 310, 131 (2005).Google Scholar
16 Long, D. P. Lazorcik, J. L. Mantooth, B. A. Moore, M. H. Ratner, M. A. Troisi, A. Yao, Y. Ciszek, J. W. Tour, J. M. and Shashidhar, R. Nature Materials 5, 901908 (2006).Google Scholar