Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-26T00:48:27.787Z Has data issue: false hasContentIssue false

The Enhancement of Band Edge Emission from ZnS/Zn(OH)2 Quantum Dots

Published online by Cambridge University Press:  17 March 2011

Hatim Mohamed El-Khair
Affiliation:
National Laboratory of Solid State Microstructures and Department of physics, Nanjing University, Nanjing 210093, P. R., China
Ling Xu
Affiliation:
National Laboratory of Solid State Microstructures and Department of physics, Nanjing University, Nanjing 210093, P. R., China
Xinfan Huang
Affiliation:
National Laboratory of Solid State Microstructures and Department of physics, Nanjing University, Nanjing 210093, P. R., China
Minghai Li
Affiliation:
National Laboratory of Solid State Microstructures and Department of physics, Nanjing University, Nanjing 210093, P. R., China
Xiaofeng Gu
Affiliation:
National Laboratory of Solid State Microstructures and Department of physics, Nanjing University, Nanjing 210093, P. R., China
Kunji Chen
Affiliation:
National Laboratory of Solid State Microstructures and Department of physics, Nanjing University, Nanjing 210093, P. R., China
Get access

Abstract

Wurtzite structure monodisperse ZnS quantum dots (QDs) of 1 to 5 nm diameter, synthesized by colloidal chemical method, were confirmed by transmission electron microscopy (TEM) images and electron diffraction (ED) patterns. Enhanced blue shifted band edge emission from Zn(OH)2 capped ZnS QDs with decreasing size has been observed, which indicates the role of inorganic surface passivation and hence supports the quantum size effect. Detectable far-red shifted emission from bare ZnS QDs has been observed when QDs precursors and stabilizer dispersed in solvents with different polarities. This emission is attributed to the surface trap states of different energies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Eychuler, A., Hasselberth, A., Kastikas, L. and Weller, H.. J. of Luminescence, 48 & 49, (1991) 745.Google Scholar
2. Huang, H.B., Xu, L., Chen, H.M., Huang, X.F., Chen, K.J. and Feng, D., Acta Physica Sinica, 8, (1999) 40.Google Scholar
3. Rosseti, R., Hull, R., Gibson, J. M. and Brus, L. E. J. Chem. Phys. 82, (1985) 552.Google Scholar
4. Alivisatos, A. P., J. Phys. Chem., 100, (1996) 13226.Google Scholar
5. Xu, L., Huang, X. F., Huang, H. B., Chen, H. M., Xu, J. and Chen, K. J., Jpn. J. Appl. Phys., 37, (1998) 3491.Google Scholar
6. Chang, Song-yuan, Liu, Lei, and Sanford Asher, A., J. Am. Chem. Soc. 116, (1994) 6739.Google Scholar
7. Dabbousi, B.O., Rodriguez-Viejo, J., Mikulec, F.V., Hine, J.R., Mattoussi, H., Ober, R., Jensen, K.F., and Bawendi, M.G., J. Phys. Chem. B, 101, (1997) 9463.Google Scholar
8. Peng, X.G., Schlamp, M.C., Kadavanich, A.V. and Alivisatos, A.P., J. Am.Chem. Soc., 119, (1997) 7019.Google Scholar
9. Xu, L., Huang, X.F., Zhu, J., Chen, H.M., and Chen, K.J., J. of Material Science, 35, (2000) 1375.Google Scholar
10. Kapral, R., Advances in Chemical Physics, ed. Prigogine, I. and Rice, S. A. (John Wiley and Sons, USA, 1981) Vol. 8, Chapter 2.Google Scholar