Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-05T13:43:33.811Z Has data issue: false hasContentIssue false

Enhanced Optical Emission from GaN Film Grown on Composite Intermediate Layers

Published online by Cambridge University Press:  10 February 2011

Xiong Zhang
Affiliation:
Center for Optoelectronics, Department of Electrical Engineering National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, elezx@nus.edu.sg
Soo-Jin Chua
Affiliation:
Center for Optoelectronics, Department of Electrical Engineering National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, elezx@nus.edu.sg
Peng Li
Affiliation:
Center for Optoelectronics, Department of Electrical Engineering National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, elezx@nus.edu.sg
Kok-Boon Chong
Affiliation:
Center for Optoelectronics, Department of Electrical Engineering National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, elezx@nus.edu.sg
Get access

Abstract

GaN films have been grown on silicon-(001) substrate with specially designed composite intermediate layers consisting of an ultra-thin amorphous silicon layer and a GaN/AlxGa1−xN (x=0.2) multilayered buffer by metal-organic chemical vapor deposition and characterized by photoluminescence and x-ray diffraction spectroscopy. It was found that the GaN films grown on the composite intermediate layers gave comparable or slightly stronger optical emission than those grown on sapphire substrate under identical reactor configuration. Moreover, the full width at half maximum for the GaN band-edge-related emission is 40 meV at room temperature. This fact indicates that, by using the proposed composite intermediate layers, the crystalline quality of GaN-based nitride grown on a silicon substrate can be significantly improved.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Nakamura, S., Senoh, M., Iwasa, N., and Nagahama, S., Jpn. J. Appl. Phys. 34, L797(1995).10.1143/JJAP.34.L797Google Scholar
2 Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y.. Kozaki, T., Umemoto, H., Sano, M., and Chocho, K., Jpn. J. Appl. Phys. 37, L309(1998).Google Scholar
3 Guha, S. and Bojarczuk, N., Appl. Phys. Lett. Vol. 72, 415(1998).10.1063/1.120775Google Scholar
4 Osinsky, A., Gangopadhyay, S., Yang, J. W., Gaska, R., Kuksenkov, D., Temkin, H., Shmagin, I. K., Chang, Y. C., Muth, J. F., and Kolbas, R. M., Appl. Phys. Lett. 72, 551(1998).10.1063/1.120755Google Scholar
5 Steckl, A. J., Devrajan, J., Tran, C., and Stall, R. A., Appl. Phys. Lett. 69, 2264(1996).10.1063/1.117528Google Scholar
6 Hiroyama, Y. and Tamura, M., Jpn. J. Appl. Phys. 37, 630(1998).10.1143/JJAP.37.L630Google Scholar
7 Yang, J. W., Sun, C. J., Chen, Q., Anwar, M. Z., Khan, M. A., Nikishin, S. A., Seryogin, G. A., Osinsky, A. V., Chernyak, L., Temkin, H., Hu, C., and Mahajan, S., Appl. Phys. Lett. 69, 3566(1996).10.1063/1.117247Google Scholar
8 Kobayashi, N. P., Kobayashi, J. T., Dapkus, P. D., Choi, W. J., Bond, A. E., Zhang, X., and Rich, D. H., Appl. Phys. Lett. 71, 3569(1997).Google Scholar
9 Wang, L., Liu, X., Zan, Y., Wang, J., Wang, D., Lu, D., and Wang, Z., Appl. Phys. Lett. 72, 109(1998).Google Scholar
10 Zhang, X., Chua, S. J., Li, P., Chong, K. B., and Wang, W., Appl. Phys. Lett. 73, 1772(1998)10.1063/1.122277Google Scholar
11 Zhang, X. and Chua, S. J., Singapore Patent, 9801054–9 (1998).Google Scholar
12 Schubert, E. F., Goepfert, I. D., Grieshaber, W., and Redwing, J. M., Appl. Phys. Lett. 71,Google Scholar