Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-25T05:22:47.822Z Has data issue: false hasContentIssue false

Enhanced Open Circuit Voltage in Aluminum Confined Post-Annealing of poly(3-hexylthiophene)/fullerene Bulk Heterojunction Solar Cells under Electric Field

Published online by Cambridge University Press:  12 April 2012

Mukesh Kumar
Affiliation:
Department of Electrical Engineering, South Dakota State University Brookings SD 57007 (USA)
Pavel Dutta
Affiliation:
Department of Electrical Engineering, South Dakota State University Brookings SD 57007 (USA)
Venkat Bommisetty
Affiliation:
Department of Electrical Engineering, South Dakota State University Brookings SD 57007 (USA)
Get access

Abstract

The effect of an external electric field during post-annealing on the device characteristics of poly(3-hexylthiophene) (P3HT) and phenyl-C61butyric acid methyl ester (PCBM) bulk heterojunction solar cells was studied. The application of external electric field in forward bias resulted in significant enhancement in Voc and fill factor whereas devices annealed under reverse bias had an enhanced Jsc. Both forward and reverse bias annealing increased the shunt resistance. The Al - blend interface topography and carrier dynamics were studied using conducting atomic force microscopy and frequency dependent intensity modulated photocurrent spectroscopy (IMPS). The results indicate that post-annealing under external electric field can be used to engineer the interface composition to enhance the charge transport in bulk heterojunction solar cells to improve the device performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yu, G., Gao, J., Hummelen, J. C., Wudl, F., and Heeger, A. J., Science 270, 1789 (1995).Google Scholar
2. Sariciftci, N. S., Smilowitz, L., Heeger, A. J., and Wudl, F., Science 258, 1474 (1992).Google Scholar
3. Thompson, B. C., and Frechet, J. M. J., Angew. Chem. Int. Ed. 47, 58 (2008).Google Scholar
4. Kim, J. Y., Lee, K., Coates, N. E., Mose, D., Nguyen, T.-Q., Dante, M., and Heeger, A. J., Science 13, 222 (2007).Google Scholar
6. Deibel, C., and Dyakonov, V., Rep. Prog. Phys. 73, 096401 (2010).Google Scholar
7. Shaw, P. E., Ruseckas, A., and Samuel, I. D. W., Adv. Mater. 20, 3516 (2008).Google Scholar
8. Li, G., Shrotriya, V., Huang, J., Yao, Y., Moriarty, T., Emery, K., and Yang, Y., Nature Materials 4, 864 (2005)Google Scholar
9. Lin, C. C., Lin, Y. Y., Li, S. S., Yu, C. C., Huang, C. L., Lee, S. H., Du, C. H., Lee, J. J., Chen, H. L. and Chen, C. W., Energ Environ Sci 4(6), 21342139 (2011).Google Scholar
10. Kim, M.-S., Kim, B.-G. and Kim, J., ACS Appl Mater Inter 1(6), 12641269 (2009).Google Scholar
11. Wagenpfahl, A., Rauh, D., Binder, M., Deibel, C. and Dyakonov, V., Physical Review B 82(11) (2010).Google Scholar
12. Padinger, F.; Rittberger, R. S.; Sariciftci, N. S. Adv. Funct. Mater. 2003, 13, 85.Google Scholar
13. Orimo, A.; Masuda, K.; Honda, S.; Benten, H.; Ito, S.; Ohkita, H.; Tsuji, H. Appl. Phys. Lett. 2010, 96, 043305.Google Scholar
14. Dutta, P., Xie, Y., Kumar, Mukesh, Rathi, M., Ahrenkiel, P., Galipeau, D., Qiao, Q., and Bommisetty, V., J. Photons. Energy 1, 011124–01 (2011).Google Scholar
15. Byers, J. C., Ballantyne, S., Rodionov, K., Mann, A., and Semenikhin, O. A., ACS Appl. Mater. Inter. 3, 392 (2011).Google Scholar
16. Peter, L. M., Chem. Rev. 90, 753 (1990).Google Scholar
17. Street, R. A., and Schoendorf, M., Phys. Rev. B 81, 205307 (2010).Google Scholar
18. Nelson, J., Phys. Rev. B 67, 155209 (2003).Google Scholar
19. Vanmaekelbergh, D., and de Jongh, P. E., Phys. Rev. B. 61, 4699 (2000).Google Scholar