Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-12T01:05:58.380Z Has data issue: false hasContentIssue false

Energy-Tunable X-Ray Diffraction in Polycrystalline Materials: a Look at Microstructure in Seashells

Published online by Cambridge University Press:  21 March 2011

Emil Zolotoyabko
Affiliation:
Department of Materials Engineering, Technion-IIT, Haifa 32000, Israel
John P. Quintana
Affiliation:
DND-CAT Research Center, Northwestern University, APS/ANL Sector 5, Building 432 A, 9700 S. Cass Ave., Argonne, IL 60439-4857, U.S.A.
Get access

Abstract

We developed a depth-sensitive x-ray diffraction technique in which diffraction profiles are measured at x-ray energies that are varied by small steps. The method is intended for synchrotron beam lines and provides non-destructive mapping of structural characteristics in inhomogeneous polycrystalline materials. Depth resolution is achieved due to an energy dependence of the x-ray penetration length. Application of this technique to seashells allowed us to extract spatial distributions of preferred orientation and strain components, which revealed pronounced variations of the shell microstructure in three dimensions. The results shed light on “engineering solutions” by mollusk. The developed technique can be used to characterize various laminated structures and composite materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bowen, D. K. and Tanner, B. K., High Resolution X-Ray Diffractometry and Topography (Taylor & Francis, London, 1998).Google Scholar
2. Deslattes, R. D., Kessler, E. G. Jr., Owens, S., Black, D., and Henin, A., J. Phys.D: Appl. Phys. 32, A3 (1999).Google Scholar
3. Holy, V., Pietsch, U., and Baumbach, T., High-Resolution X-Ray Scattering from Thin Films and Multilayers (Springer, Berlin, 1999).Google Scholar
4. Lienert, U., Poulsen, H. F., Martins, R. V., and Kvick, A., Mater. Sci. Forum 347, 95 (2000).Google Scholar
5. Hall, C., Barnes, P., Cockcroft, J. K., Colston, S. L., Hausermann, D., Jacques, S. D. M., Jupe, A. P., and Kunz, M., Nucl. Instr. & Meth. Phys. Res. B 140, 253 (1998).Google Scholar
6. Chung, J. S. and Ice, G. E., J. Appl. Phys. 86, 5249 (1999).Google Scholar
7. Lienert, U., Poulsen, H. F., and Kvick, A., AIAA Journal 39, 919 (2001).Google Scholar
8. Poulsen, H. F., Grabe, S., Lorentzen, T., Jensen, D. J., Poulsen, F. W., Andersen, N. H., Frello, T., Feidenhans'l, R., and Graafsma, H., J. Synchrotron Rad. 4, 147 (1997).Google Scholar
9. Nielsen, S. F., Wolf, A., Poulsen, H. F., Ohler, M., Lienert, U., and Owen, R. A., J. Synchrotron Rad. 7, 103 (2000).Google Scholar
10. Ice, G. E. and Larsen, B. C., Adv. Eng. Mater. 2, 643 (2000).Google Scholar
11. Schneider, G., Hambach, D., Niemann, B., Kaulich, B., Susini, J., Hoffmann, N., and Hasse, W., Appl. Phys. Lett. 78, 1936 (2001).Google Scholar
12. Genzel, Ch. and Reimers, W., Surface and Coatings Tech. 116–119, 404 (1999).Google Scholar
13. Weiner, S. and Addadi, L., J. Mater. Chem. 7, 689 (1997).Google Scholar
14. Warren, B. E., X-Ray Diffraction (Dover Publications, New-York, 1990).Google Scholar
15. Craig, I. J. and Thompson, A. M., Computers in Phys. 8, 648 (1994).Google Scholar
16. Lowenstam, H. A. and Weiner, S., On Biomineralization (Oxford University Press, Oxford, 1989).Google Scholar
17. Feng, Q. L., Su, X. W., Cui, F. Z., and Li, H. D., Biomimetics 3, 159 (1995).Google Scholar
18. Berman, A., Addadi, L., Kvick, A., Leiserowitz, L., Nelson, M., and Weiner, S., Science 259, 776 (1993).Google Scholar
19. Dollase, W. A., J. Appl. Cryst. 19, 267 (1986).Google Scholar
20. Sceletal Biomineralization: Patterns, Processes and Evolutionary Trends. (Van Nostrand Reinhold, ed. by Carter, J. G., 1990).Google Scholar
21. Zolotoyabko, E. and Quintana, J. P., Rev. Sci. Instr. (in the press).Google Scholar
22. Leventouri, T., Physica C 277, 82 (1997).Google Scholar
23. Zamir, S., Meyler, B., Zolotoyabko, E., and Salzman, J., J. Cryst. Growth 218, 181 (2000).Google Scholar
24. Spaepen, F., Acta mater. 48, 31 (2000).Google Scholar