Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-25T18:17:39.144Z Has data issue: false hasContentIssue false

Energy-specific equilibrium in nanowires for efficient thermoelectric power generation

Published online by Cambridge University Press:  01 February 2011

Heiner Linke
Affiliation:
linke@uoregon.edu, Univ. Oregon, Physics, 1274 University of Oregon, Eugene, OR, 97403, United States
Tammy Humphrey
Affiliation:
tammy.humphrey@unsw.edu.au, University of Geneva, Theoertical Physics, Switzerland
Mark O'Dwyer
Affiliation:
mo15@uow.edu.au, University of Wollongong, Engineering Physics, Australia
Get access

Abstract

There is great scientific, economic and environmental interest in the development of thermoelectric materials capable of direct thermal-to-electric energy conversion with high efficiency. Recent theory predicts that in materials with a fine-tuned electronic density of states, electrons can be placed in energy-specific equilibrium, and the efficiency of thermoelectric power generation can approach the fundamental Carnot limit. Here we review the relevant theory of energy-specific equilibrium. We describe a concept for a proof-of principle demonstration of near-Carnot efficient power conversion involving a single, ballistic nanowire at low temperatures, and we discuss the potential for room-temperature applications in diffusive materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Humphrey, T. E. and Linke, H., Physica E 29, 390398 (2005).Google Scholar
2. Landauer, R., J. Stat. Phys. 53, 233248 (1988).Google Scholar
3. Hicks, L. D. and Dresselhaus, M. S., Phys. Rev. B 47, 12727 (1993).Google Scholar
4. Hicks, L. D. and Dresselhaus, M. S., Phys. Rev. B 47, 16631 (1993).Google Scholar
5. Vashaee, D. and Shakouri, A., Phys. Rev. Lett. 92, 106103 (2004).Google Scholar
6. O'Dwyer, M. F., Humphrey, T. E., Zhang, C., and Lewis, R., Phys. Rev. B 72, 205330 (2005).Google Scholar
7. Shakouri, A. and Bowers, J. E., Proc. 16th Annual Conference on Thermoelectrics, 636 (1997).Google Scholar
8. Shakouri, A. and Bowers, J. E., Appl. Phys. Lett., 1234 (1997).Google Scholar
9. Mahan, G. D. and Sofo, J. O., Proc. Nat. Acad. Sci (USA) 93, 7436 (1996).Google Scholar
10. Capinski, W. S., Maris, H. J., Ruf, T., Cardona, M., Ploog, K. H., and Katzer, D. S., Phys. Rev. B 59, 8105 (1999).Google Scholar
11. Venkatasubramanian, R., Phys. Rev. B 61, 30913097 (2000).Google Scholar
12. Borca-Tasciuc, T., et al. , Superlatt. and Microstruct. 28, 199206 (2000).Google Scholar
13. Harman, T. C., Taylor, P. J., Walsh, M. P., and LaForge, B. E., Science 297, 22292232 (2002).Google Scholar
14. Venkatasubramanian, R., Siivola, E., Colpitts, T., and O'Quinn, B., Nature 413, 597602 (2001).Google Scholar
15. Humphrey, T. E., Newbury, R., Taylor, R. P., and Linke, H., Phys. Rev. Lett. 89, 116801 (2002).Google Scholar
16. Derenyi, I. and Astumian, R. D., Phys. Rev. E 59, R6219–R6222 (1999).Google Scholar
17. Callen, H. B., Thermodynamics and an Introduction to Thermostatics (Wiley, New York, 1985).Google Scholar
18. Humphrey, T. E. and Linke, H., Phys. Rev. Lett. 94, 096601 (2005).Google Scholar
19. O'Dwyer, M., Humphrey, T. E., and Linke, H., to appear in Nanotechnology. Preprint available at cond-mat/0601110 (2006).Google Scholar
20. Roukes, M. L., Freeman, M. R., Germain, R. S., Richardson, R. C., and Ketchen, M. B., Phys. Rev. Lett. 55, 422425 (1985).Google Scholar
21. Björk, M. T., et al. , Nano Letters 2, 87 (2002).Google Scholar
22. Björk, M. T., et al. , Appl. Phys. Lett. 81, 4458 (2002).Google Scholar