Hostname: page-component-84b7d79bbc-c654p Total loading time: 0 Render date: 2024-07-25T06:11:34.114Z Has data issue: false hasContentIssue false

Energy Transfer Between Eu2+, Eu3+ and Rh6G in Silica, Zirconia and Alumina Gels

Published online by Cambridge University Press:  25 February 2011

W. Nie
Affiliation:
UCLA, Department of Materials Science and Engineering, L.A., CA 90024–1595
B. Dunn
Affiliation:
UCLA, Department of Materials Science and Engineering, L.A., CA 90024–1595
B. Sanchez
Affiliation:
Laboratoire de Chimie de la Matière Condensée, URA 302, Université Pierre et Marie Curie, 4, place Jussieu, 75252 Paris, France
P. Griesmar
Affiliation:
Laboratoire de Chimie de la Matière Condensée, URA 302, Université Pierre et Marie Curie, 4, place Jussieu, 75252 Paris, France
Get access

Abstract

The sol-gel process provides new opportunities for the synthesis of photonic materials. Sol-gel chemistry is mainly based on inorganic polymerization reactions performed in solution at lower temperatures than conventional chemical methods. Homogeneous doping by mixing components at a molecular level and synthesis of mixed organic-inorganic materials can then be performed. Luminescent properties of dyes inside silica, aluminosilicates or transition metal oxide based gels have been studied extensively. Much less work has been devoted to the study of energy transfer (ET) inside sol-gel matrices. Sol-gel materials provide the opportunity to investigate dye-dye ET, as well as dye-ion ET. This communication presents an optical study of a variety of sol-gel matrices (SiO2, Al2O3, ZrO2 based gels) codoped with rhodamine 6G(Rh6G) and europium. Different types of ET are observed among Rh6G, Eu3+ and Eu2+. The Eu2+/Eu3+ ratio is found to be strongly dependent on the host matrices. The reduction of Eu3+ t· Eu2+ in dried gels may relate to the presence of Rh6G.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brinker, C. J., Scherer, G. W., Sol-Gel Science, (Acad. Press, 1990)Google Scholar
2. Livage, J., Henry, M., Sanchez, C., Prog, in Solid State Chem., 18, 259(1988)CrossRefGoogle Scholar
3. Avnir, D., Kaufman, R., Reisfeld, R., J. Non-cryst. Solids, 24, 395(1985)CrossRefGoogle Scholar
4. Dunn, B., Knobbe, E., McKiernan, J., Pouxviel, J. C., Zink, J. I., Proc. MRS Symp., 121, 331(1988)CrossRefGoogle Scholar
5. Dunn, B., Mackenzie, J. D., Zink, J. I., Stafsudd, O. M., Proc. SPIE, 1328, 174(1990)CrossRefGoogle Scholar
6. Salin, F., LeSaux, G., Georges, P., Brun, A., Bagnali, C., Zarzycki, J., Opt. Letts., 14, 785(1989)CrossRefGoogle Scholar
7. Reisfeld, R., Brusilovsky, D., Eyal, M., Miton, E., Burstein, Z., Ivri, J., Chem. Phys Letts., 160, 43(1989)CrossRefGoogle Scholar
8. Nie, W., Boulon, G., Monteil, A., Chem. Phys. Lett., 164, 106(1989)CrossRefGoogle Scholar
9. Niew, W., Boulon, G., Monteil, A, J. Phys., France, 50, 3309(1989)CrossRefGoogle Scholar
10. Mares, J. A., Khas, Z., Nie, W., Boulon, G., J. Phys. I., 1, 881(1991)Google Scholar
11a. Genet, M., Brandel, V., Lahalle, M. P., Simoni, E., C.R. Acad. Sci. Paris, 311, série 11, 1321(1990)Google Scholar
11b. Genet, M., Brandel, V., Lahalle, M. P., Simoni, E., Proc. SPIE, 1328, 194(1990)CrossRefGoogle Scholar
12. Penkofer, A., Lu, Y., Chem. Phys., 103, 399(1986)CrossRefGoogle Scholar
13. Campostrini, R. et. al., J. Mater. Res., 7, 745(1992)CrossRefGoogle Scholar