Hostname: page-component-5c6d5d7d68-wtssw Total loading time: 0 Render date: 2024-08-16T06:34:02.538Z Has data issue: false hasContentIssue false

Energetics of Impurity-Free Vacancy-Mediated Disordering of AlGaAs/GaAs Superlattices

Published online by Cambridge University Press:  22 February 2011

B.L. Olmsted
Affiliation:
The Institute of Optics, University of Rochester, Rochester, New York 14627
S.N. Houde-Walter
Affiliation:
The Institute of Optics, University of Rochester, Rochester, New York 14627
Get access

Abstract

We report on a systematic study of impurity-free Al-Ga interdiffusion in AlGaAs/GaAs superlattices in sealed ampoules. Three ambients were explored: along the Ga-rich solidus, with no excess Ga or As in the evacuated ampoule, and with excess As less than that required to reach the As-rich solidus limit. In each of the ambients the Arrhenius dependence of the Al-Ga interdiffusion coefficient is represented by a single activation energy throughout the temperature range investigated (700-1050 °C). These results were obtained using four structures with superlattice periods ranging from 90 to 520 Å. Excellent agreement was obtained between the Al-Ga interdiffusion coefficients measured using superlattices on Sidoped and undoped GaAs substrates. With proper normalization to a constant As overpressure, PAs4 = 1 atm, the Ga- and As-rich activation energies are 3.26±0.12 eV and 4.91±0.23 eV, respectively. These activation energies are in the range predicted for Al-Ga interdiffusion mediated by group Ill-vacancy second nearest-neighbor hopping. The increase in energy when going from Ga- to As-rich conditions is attributed to a shift in the Fermi-level position towards the valence band with an increase in the ionized group Ill-vacancy concentration.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Olmsted, B. L. and Houde-Walter, S. N., Appl. Phys. Lett. 60, 368 (1992).Google Scholar
2. Rouviere, J.-L., Kim, Y., Cunningham, J., Rentschler, J. A., Bourret, A., and Ourmazd, A., Phys. Rev. Lett. 68, 2798 (1992).Google Scholar
3. Hsieh, K. Y., Lo, Y. C., Lee, J. H., and Kolbas, R. M., in Gallium Arsenide and Related Comounds 1988, edited by Harris, J. S. (IOP, Atlanta, GA, 1988), Vol. 15, pp. 393396.Google Scholar
4. Guido, L. J., Holonyak, N. Jr., Hsieh, K. C., Kaliski, R. W., Plano, W. E., Burnham, R. D., Thornton, R. L., Epler, J. E., and Paoli, T. L., J. Appl. Phys. 61, 1372 (1987).Google Scholar
5. Lee, J.-C. and Schlesinger, T. E., J. Vac. Sci. Technol. B 5, 1187 (1987).Google Scholar
6. Chang, L. L. and Koma, A., Appl. Phys. lett. 29, 138 (1976).Google Scholar
7. Tan, T. Y., You, H. M., Yu, S., Gölsele, U. M., Jiger, W., Boeringer, D. W., Zypman, F., Tsu, R., and Lee, S.-T., J. Appl. Phys. 22, 5206 (1992).Google Scholar
8. Tan, T. Y. and Gösele, U., Appl. Phys. Lett. 52, 1240 (1988).Google Scholar
9. Wager, J. F., J. Appl. Phys. 69, 3022 (1991).Google Scholar
10. Iguchi, H., J. Mater. Res. 6, 1542 (1991).Google Scholar
11. Vechten, J. A. Van and Schmid, U., J. Vac. Sci. Technol. B 7, 827 (1989).Google Scholar
12. Olmsted, B. L., Houde-Walter, S. N., and Viturro, R. E., in Materials Research Society Meeting. Advanced III-V Compound Semiconductor Growth. Processing and Devices, edited by Pearton, S. J., Sadana, D. K., and Zavada, J. M. (Mater. Res. Soc. Proc. 240, Pittsburgh, PA, 1991), pp. 721726.Google Scholar
13. Arthur, J. R., J. Phys. Chem. Solids 28, 2257 (1967).Google Scholar
14. Rau, H., J. Chem. Thermodynamics 7, 27 (1975).Google Scholar
15. Manning, J. R., Diffusion Kinetics for Atoms in Crystals (Van Nostrand, Princeton, 1968).Google Scholar
16. Zhang, S. B. and Northrup, J. E., Phys. Rev. Lett. 67, 2339 (1991).Google Scholar
17. Jansen, R. W. and Sankey, O. F., Phys. Rev. B 39, 3192 (1989).Google Scholar
18. Scheffler, M. and Dabrowski, J., Philos. Mag. A 58, 107 (1988).Google Scholar
19. Baraff, G. A. and Schlüter, M., Phys. Rev. Lett. 55, 1327 (1985).Google Scholar
20. Kahen, K. B., Peterson, D. L., Rajeswaran, G., and Lawrence, D. L., Appl. Phys. Lett. 55, 651 (1989).Google Scholar
21. Chiang, S. Y. and Pearson, G. L., J. Appl. Phys. 46, 2986 (1975).Google Scholar
22. Nishizawa, J., Otsuka, H., Yamakoshi, S., and Ishida, K., Jpn. J. Appl. Phys. 13, 46 (1974).Google Scholar
23. Sze, S. M., Physics of Semiconductor Devices (John Wiley & Sons, New York, 1981), pp. 2227.Google Scholar