Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-11T08:16:43.993Z Has data issue: false hasContentIssue false

Energetic Particle Synthesis of Metastable Layers for Superior Mechancial Properties

Published online by Cambridge University Press:  10 February 2011

D. M. Follstaedt
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1056
J. A. Knapp
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1056
S. M. Myers
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1056
M. T. Dugger
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1056
T. A. Friedmann
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1056
J. P. Sullivan
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1056
O. R. Monteiro
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA 94720
J. W. Ager III
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA 94720
I. G. Brown
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA 94720
T. Christenson
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1056
Get access

Abstract

Energetic particle methods have been used to synthesize two metastable layers with superior mechanical properties: amorphous Ni implanted with overlapping Ti and C, and amorphous diamond-like carbon (DLC) formed by vacuum-arc deposition or pulsed laser deposition. Elastic modulus, yield stress and hardness were reliably determined for both materials by fitting finiteelement simulations to the observed layer/substrate responses during nanoindentation. Both materials show exceptional properties, i.e., the yield stress of amorphous Ni(Ti,C) exceeds that of hardened steels and other metallic glasses, and the hardness of DLC (up to 88 GPa) approaches that of crystalline diamond (∼100 GPa). Tribological performance of the layers during unlubricated sliding contact appears favorable for treating Ni-based micro-electromechanical systems: stick-slip adhesion to Ni is eliminated, giving a low coefficient of friction (∼0.3–0.2) and greatly reduced wear. We discuss how energetic particle synthesis is critical to forming these phases and manipulating their properties for optimum performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fossnagel, S. M., Cuomo, J. J. and Westwood, W. D., Handbook of Plasma Processing Technology, (Noyes Publications, Park Ridge, NJ, 1990).Google Scholar
2. Follstaedt, D. M., Nucl. Inst. Meth. B 7/8, 11 (1985).Google Scholar
3. Neuville, S. and Matthews, A., MRS Bulletin 22, 22 (Sept. 1997).Google Scholar
4. Knapp, J. A., Follstaedt, D. M., Barbour, J. C., Myers, S. M., Ager, J. W. III, Monteiro, O. R. and Brown, I. G., Mat. Res. Soc. Symp. Proc. 438, 617 (1997).Google Scholar
5. Knapp, J. A., Follstaedt, D. M., Myers, S. M., Barbour, J. C., Friedmann, T. A., Ager, J. W. III, Monteiro, O. R. and Brown, I. G., Surface Coatings and Technology, in press.Google Scholar
6. Becker, E. W., Ehrfeld, W., Hagmann, P., Maner, A. and Mtinchmeyer, D., Microelect. Eng. 4, 35 (1986).Google Scholar
7. Guckel, H., Skrobis, K. J., Klein, J. and Christenson, T. R., J. Vac. Sci. Technol. A 12, 2559 (1994).Google Scholar
8. 1. Singer, L., Carosella, C. A. and Reed, J. R., Nucl. Instrum. Meth. 182–183, 923 (1981).Google Scholar
9. Pope, L. E., Yost, F. G., Follstaedt, D. M., Knapp, J. A. and Picraux, S. T., in Wear of Materials 1983. ed. Ludema, K. C. (ASME, New York, 1983), pp. 280.Google Scholar
10. Dillich, S. A., Bolster, R. N. and Singer, I. L., Mat. Res. Soc. Symp. Proc. 27, 673 (1984).Google Scholar
11. Follstaedt, D. M., Yost, F. G., Pope, L. E., Picraux, S. T. and Knapp, J. A., Appl. Phys. Lett. 43, 358 (1983); also Appl. Phys. Lett. 45, 529 (1984) and erratum Appl. Phys. Lett. 46, 207 (1985).Google Scholar
12. Mullendore, A. W., Pope, L. E., Hays, A. K., Nelson, G. C., Hills, C. R. and Lefevre, B. G., Thin Solid Films 186, 215 (1990).Google Scholar
13. Ziegler, J. F., Biersack, J. P. and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon, New York, 1995).Google Scholar
14. Myers, S. M., Knapp, J. A., Follstaedt, D. M. and Dugger, M. T., J. Applied Physics, in press.Google Scholar
15. Follstaedt, D. M., Myers, S. M., Knapp, J. A., Dugger, M. T. and Christenson, T. A., Surface Coatings and Technology, in press.Google Scholar
16. Knapp, J. A., Follstaedt, D. M. and Doyle, B. L., Nucl. Inst. Meth. B 7/8, 38 (1985).Google Scholar
17. Niebuhr, J., Gerber, R., Schaller, A. and Müller, H.-W., Physical Data of Amorhous Metals. Part B: Data Tables (Fachinformationszentrum Karlsruhe, Freiburg, Germany, 1991) p. 239.Google Scholar
18. Inoue, A., Iwadachi, T., Minemura, T. and Masumoto, T., Trans. Jap. Inst. Metals 22, 197 (1981).Google Scholar
19. Follstaedt, D. M., Knapp, J. A. and Peercy, P. S., J. Non-Crystal. Solids 61/62, 451 (1984).Google Scholar
20. Knapp, J. A., Follstaedt, D. M. and Myers, S. M., unpublished results.Google Scholar
21. Myers, S. M., Follstaedt, D. M., Knapp, J. A. and Christenson, T. R., Res. Soc. Symp. Proc. 444, 99 (1997).Google Scholar
22. Myers, S. M., Knapp, J. A., Follstaedt, D. M., Dugger, M. T. and Christenson, T. R., Surface Coatings and Technology, in press.Google Scholar
23. Pharr, G. M., Callahan, D. L., McAdams, S. D., Tsui, T. Y., Anders, S., Anders, A., Ager, J. W. III, G.Brown, I., Bhatia, C. S. and Silva, S. R. P., Appl. Phys. Lett. 68, 779 (1996).Google Scholar
24. Marks, N. A., McKenzie, D. R., Pailthorpe, B. A., Bernasconi, M. and Parrinello, M., Phys. Rev. Lett. 76, 768 (1996).Google Scholar
25. Lifshitz, Y., Kasi, S. R. and Rabalais, J. W., Phys. Rev. Lett. 62, 1290 (1989).Google Scholar
26. McKenzie, D. R., Muller, D. and Pailthorpe, B. A., Phys. Rev. Lett. 67, 773 (1991).Google Scholar
27. Friedmann, T. A., Sullivan, J. P., Knapp, J. A., Tallant, D. R., Follstaedt, D. M., Medlin, D. L. and Mirkarimi, P. B., Applied Physics Letters, scheduled for vol.77, Dec. 29, 1997.Google Scholar
28. Anders, S., Anders, A., Brown, I. G., Wei, B., Komvopoulos, K., Ager, J. W. III, and Yu, K. M., Surf. Coat. Technol. 68/69, 388 (1994).Google Scholar
29. Oliver, W. C. and Pharr, G. M., J. Mater. Res. 7, 1564 (1992).Google Scholar
30. Ager, J. W. III, Anders, S., Brown, I. G., Nastasi, M. and Walter, K. C., Surf. Coat. Technol. 91, 91 (1997).Google Scholar
31. Sullivan, J. P., Friedmann, T. A. and Baca, A. G., J. Electron. Mat. 26, 1021 (1997).Google Scholar
32. Knapp, J. A., Follstaedt, D. M., Friedmann, T. A., Magerkurth, A. J., Clarke, S. W., Monteiro, O. R., Ager, J. W. III, Brown, I. G., Lucas, B. N. and Oliver, W. C., presented Fall'97 MRS, Symp. NN.Google Scholar
33. Friedmann, T. A., McCarty, K. F., Barbour, J. C., Siegal, M. P. and Dibble, D. C., Appl. Phys. Lett. 68, 1643 (1996).Google Scholar