Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-15T14:27:29.387Z Has data issue: false hasContentIssue false

Empirical Interatomic Potential for Si-H Interactions

Published online by Cambridge University Press:  15 February 2011

M.V. Ramana Murty
Affiliation:
Laboratory of Applied Physics California Institute of Technology, CA 91125
Harry A. Atwater
Affiliation:
Laboratory of Applied Physics California Institute of Technology, CA 91125
Thomas J. Watson
Affiliation:
Laboratory of Applied Physics California Institute of Technology, CA 91125
Get access

Abstract

An empirical TersofF-type interatomic potential has been developed for describing Si-H interactions. The potential gives a reasonable fit to bond lengths, angles and energetics of silicon hydride molecules and hydrogen-terminated silicon surfaces. The frequencies of most vibrational modes are within 15% of the experimental and ab initio theory values. The potential is computationally efficient and suitable for molecular dynamics investigations of various processing treatments of hydrogen-terminated silicon surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Anthony, B., Hsu, T., Qian, R., Irby, J., Banerjee, S. and Tasch, A., J. Elec. Mat. 19, 375 (1990).Google Scholar
[2] Eaglesham, D.J., Higashi, G.S. and Cerullo, M., Appl. Phys. Lett. 59, 685 (1991).Google Scholar
[3] Smith, D.L., Chen, C.-C., Anderson, G.B., Hagstrom, S.B., Appl. Phys. Lett. 62, 570 (1993).Google Scholar
[4] Ohmi, T., Ichikawa, T., Iwabuchi, H. and Shibata, T., J. Appl. Phys. 66, 4756 (1989).Google Scholar
[5] Murty, M.V.R. and Atwater, H.A., presented at the Mat. Res. Soc. Symp. A, Fall 1993.Google Scholar
[6] Kwon, I., Biswas, R. and Soukoulis, C.M., Phys. Rev. B 45, 3332 (1992).Google Scholar
[7] Agrawal, P.M., Thompson, D.L. and Raff, L.M., J. Chem. Phys. 88, 5948 (1988).Google Scholar
[8] Pearton, S.J., Corbett, J.W. and Stavola, M., Hydrogen in Crystalline Semiconductors, Springer-Verlag series in Mat. Sci. v. 16, 1992.Google Scholar
[9] Johnson, N.M., Doland, C., Ponce, F., Walker, J. and Anderson, G., Physica B 170, 3 (1991).Google Scholar
[10] Tersoff, J., Phys. Rev. B 38, 9902 (1988).Google Scholar
[11] Stillinger, F.H. and Weber, T.A., Phys. Rev. B 31, 5262 (1985).Google Scholar
[12] Tersoff, J., Phys. Rev. B 39, 5566 (1989).Google Scholar
[13] Brenner, D.W., Phys. Rev. B 42, 9458 (1990).Google Scholar
[14] Handbook of Chemistry and Physics, CRC Press, 72nd ed., 19911992.Google Scholar
[15] Kittel, C., Introduction to Solid State Physics, 6th ed., Wiley, 1986.Google Scholar
[16] Gordon, M.S., Truong, T.N. and Bonderson, E.K., J. Am. Chem. Soc. 108, 1421 (1986).Google Scholar
[17] JANAF Thermochemical Tables, Dow Chem. Comp., 1976.Google Scholar
[18] Durig, J.R. and Church, J.S., J. Chem. Phys. 73, 4784 (1980).Google Scholar
[19] Milligan, D.E. and Jacox, M.E., J. Chem. Phys. 52, 2594 (1970).Google Scholar
[20] Ho, P., Coltrin, M.E., Binkley, J.S. and Melius, C.F., J. Phys. Chem. 89, 4647 (1985).Google Scholar
[21] Goddard, W.A. III, Nature of the Chemical Bond, California Institute of Technology, lecture notes.Google Scholar
[22] Verma, R.D. and Warsop, P.A., Can. J. Phys. 41, 152 (1963).Google Scholar
[23] Chabal, Y.J. and Raghavachari, K., Phys. Rev. Lett. 54, 1055 (1985).Google Scholar
[24] Northrup, J.E., Phys. Rev. B 44, 1419 (1991).Google Scholar
[25] Craig, B.I. and Smith, P.V., Surf. Sci. 226, L55 (1990).Google Scholar
[26] Myers, S.M. et al., Rev. Mod. Phys. 64, 559 (1992).Google Scholar
[27] Van de Walle, C.G., Denteneer, P.J.H., Bar-Yam, Y. and Pantelides, S.T., Phys. Rev. B 39, 10791 (1989).Google Scholar
[28] Zhang, S.B. and Jackson, W.B., Phys. Rev. B 43, 2142 (1991).Google Scholar