Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T09:20:51.070Z Has data issue: false hasContentIssue false

Electrostatic Self-assembly of Metal and Semiconductor Nanoparticles in Polyelectrolytes: Assembly Dynamics, and Electrochemical Behavior

Published online by Cambridge University Press:  10 February 2011

Mariezabel Markarian
Affiliation:
Department of Chemistry, American University of Beirut, Beirut 110236, Lebanon;
Jad Jaber
Affiliation:
Department of Chemistry, American University of Beirut, Beirut 110236, Lebanon;
Yan Xin
Affiliation:
National High-Magnetic Field Laboratory, Florida State University, Tallahassee 32310, FL, USA.
Sara Ghannoum
Affiliation:
Department of Chemistry, American University of Beirut, Beirut 110236, Lebanon;
Lara I. Halaoui*
Affiliation:
Department of Chemistry, American University of Beirut, Beirut 110236, Lebanon;
*
*Corresponding Author: Lara.Halaoui@aub.edu.lb
Get access

Abstract

The electrostatic self-assembly of hetero-nanostructured multilayers of metal and semiconductor nanoparticles in polyelectrolytes, the self-assembly dynamics, and electrochemistry at the assembled films is reported. Polyacrylate-capped Pt (<d>=2.5 ± 0.6 nm) and Q-CdS nanoparticles (<d>=3.6 ± 0.5 nm) were assembled in poly(diallyldimethylammonium chloride). The nanoparticle assembly dynamics is shown to be a function of the nanoparticle solution ionic strength and its composition. Electrochemical studies at Pt nanoparticles in PDDA reveal that charge hopping is feasible through the nanocomposite film, and that the catalytic activity of the nanoparticles is retained in the assembled structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Iler, R. K., Colloid, J. Interface Sci. 21, 569(1966)Google Scholar
2. Decher, G., Science 277, 1232(1997)Google Scholar
3. Decher, G., In: JF Sauvage, HWHosseini, eds. Comprehensive Supramolecular Chemistry. Oxford: Pergamon Press, 1996, Vol 9, pp 507528.Google Scholar
4. Hicks, J. F., Seok-Shon, Y., Murray, R. W.. Langmuir 18, 2288(2002)Google Scholar
5. Ghannoum, S., Xin, Y., Jaber, J., Halaoui, L. I., Langmuir 19, in press (2003)Google Scholar
6. Kotov, A., Dékány, I., Fendler, J. H., J. Phys. Chem. 99, 13065(1995)Google Scholar
7. Halaoui, L. I., Langmuir 17, 7130(2001)Google Scholar
8. Ostrander, J. W., Mamedov, A. A., Kotov, N. A., J. Am. Chem. Soc. 123, 1101(2001)Google Scholar
9. Will, F. G., Knorr, C. A., Zeit. Elektrochem. 64, 258(1960)Google Scholar
10. Markovié, N. M., Schmidt, T. J. T. J., Grgur, B. N., Gasteiger, H. A., Behm, R. J., Ross, P. N., J. Phys. Chem. B 103, 8568(1999) and references thereinGoogle Scholar
11. Honda, K., Yoshimura, M., Rao, T. N., Tryk, D. A., Fijishima, A., Yusui, K., Sakamota, Y., Nishio, K., Masuda, H., J. Electroanal. Chem. 514, 35(2001)Google Scholar
12. Halaoui, L. I., J. Electrochem. Soc. in press (2003)Google Scholar