Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-12T23:38:45.305Z Has data issue: false hasContentIssue false

Electrostatic and Steric Effect of Peptides Functionalized on Self-Assembled Rosette Nanotubes

Published online by Cambridge University Press:  02 March 2011

Mounir El-Bakkari
Affiliation:
National Institute for Nanotechnology, Department of Chemistry, University of Alberta, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G 2M9, Canada.
Rachel L. Beingessner
Affiliation:
National Institute for Nanotechnology, Department of Chemistry, University of Alberta, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G 2M9, Canada.
Aws Alshamsan
Affiliation:
National Institute for Nanotechnology, Department of Chemistry, University of Alberta, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G 2M9, Canada.
Jae-Young Cho
Affiliation:
National Institute for Nanotechnology, Department of Chemistry, University of Alberta, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G 2M9, Canada.
Get access

Abstract

Discrete nanoscale tubular architectures have received significant attention during the past decade because of their potential role in electronic and photonic devices, sensors, liquid crystals, artificial channel systems and biomedical engineering [1-2]. Our research group has reported the synthesis and characterization of the bicyclic G∧C motif, a self complementary DNA base analogue, which undergoes hierarchical self-assembly to form Rosette Nanotubes (RNTs) [3]. The stability of this system depends however, on functional group density (sterics) and net charge (electrostatics) on the RNT surface [5c]. To this end, we have synthesized several G∧C modules bearing oligopeptides with different lengths and net charge and investigated their self-assembling properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.(a) Tans, S. J., Devoret, M. H., Dai, H., Thess, A., Smalley, R. E., Geerligs, L. J. and Dekker, C., Nature, 386, 474 (1997); (b) D. T. Bong, T. D. Clark, J. R. Granja and M. R. Ghadiri. Angew. Chem., Int. Ed. 40, 988 (2001); (c) J. H. Jung, G. John, K. Yoshida, and T. Shimizu, J. Am. Chem. Soc. 124, 10674 (2002); (d) M. Reches and E. Gazit, Science, 300, 625 (2003); (e) R. J. Chen, C. H. Choi, S. Bangsaruntip, E. Yenilmez, W. Tang, Q. Wang, Y.-L. Chang and H. Dai, J. Am. Chem. Soc. 126, 1563 (2004); (f) D. Liu, S. H. Park, J. H. Reif and T. H. LaBean, Proc. Natl. Acad. Sci. U.S.A. 101, 717 (2004). Google Scholar
2.(a) Chun, J. G., Moralez, H., Fenniri, H. and Webster, T. J., Nanotechnology, 15, S234 (2004); (b) A. L. Chun, J. Moralez, L. Zhang, S. Ramsaywack, H. Fenniri and T. Webster, J. Tissue Eng.: Part A, 14, 1353 (2008); (c) L. Zhang, F. Rakotondradany, A. J. Myles, H. Fenniri and T. Webster, J. Biomaterials, 30, 1309 (2009). Google Scholar
3. Fenniri, H., Mathivanan, P., Vidale, K. L., Sherman, D. M., Hallenga, K. and Wood, K. V., J. Am. Chem. Soc. 123, 3854 (2001).Google Scholar
4. Kumar, N. S. S., Varghese, S., Narayan, G. and Das, S., Angew. Chem. Int. Ed. 45, 6317 (2006).Google Scholar
5.(a) Fenniri, H., Deng, B.-L. and Ribbe, A. E., J. Am. Chem. Soc. 124, 11064 (2002); (b) H. Fenniri, B.-L. Deng, A. E. Ribbe, K. Hallenga, J. Jacob and P. Thiyagarajan, Proc. Natl. Acad. Sci. U.S.A. 99, 6487 (2002); (c) J. G. Moralez, J. Raez, T. Yamazaki, M. R. Kishan, A. Kovalenko and H. Fenniri, J. Am. Chem. Soc. 127, 8307 (2005); (d) J. Raez, J. G. Moralez, and H. Fenniri, J. Am. Chem. Soc. 126, 16298 (2004). Google Scholar
6. Fmoc Solid Phase Peptide Synthesis: A Practical Approach; Chan, W. C.; White, P. D., Eds.; Oxford University Press: New York, (2000).Google Scholar
7. The pka values of Kn.M and Kn.T was calculated using ChemAxon Ltd., physical properties software. Google Scholar