Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-29T14:05:17.257Z Has data issue: false hasContentIssue false

Electron-Radiation-Induced Epitaxial Growth of CoSi2 on Si(111)

Published online by Cambridge University Press:  25 February 2011

C. W. Nieh
Affiliation:
Keck Laboratory of Engineering, California Institute of Technology, Pasadena, California 91125
T. L. Lin
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109
R. W. Fathauer
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109
Get access

Abstract

We report electron-radiation-induced epitaxial growth of CoSi2 on Si(111) from an amorphous Co/Si 1:2 mixture with epitaxial CoSi2 nuclei. Under the electron beam of a Philips EM430 electron microscope, the epitaxial nuclei grow parallel to the surface with a growth rate orders of magnitude higher than that for thermally activated growth. The substrate temperature during irradiation and the electron energy dependence were studied. Electron-radiation-induced growth shows very weak temperature dependence in the temperatures between 100°K and 300°K and the activation energy is 0.03 eV. The growth rate increases significantly as the electron energy increased to 200 KeV which is about the threshold energy for displacing Si atoms.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gibbons, J. F., Hess, L. D., and Sigmon, T. eds., “Laser and Electron – Beam Solid Interactions and Materials Processing”, (Elsevier-North Holland, New York, 1981).Google Scholar
2. Atwater, H. A., Smith, H. I., and Thompson, C. V., Mat. Res. Soc. Symp. Proc. 51, 337 (1986).CrossRefGoogle Scholar
3. Atwater, H. A., Thompson, C. V., Appl. Phys. Lett. 53, 2155 (1988).Google Scholar
4. Poate, J. M., Linnros, J., Priolo, F., Jacobson, D. C., Batstonee, J. L., and Thompson, M. O., Phys. Rev. Lett. 60, 1322 (1988).Google Scholar
5. Elliman, R. G., William, J. S., Maher, D. M., and Brown, W. L., Mat. Res. Soc. Symp. Proc. 51, 319 (1986).CrossRefGoogle Scholar
6. Williams, J. W., Elliman, R. G., Brown, W. L., and Seidel, T. E., Phys. Rev. Lett. 55, 1482 (1985).Google Scholar
7. Linnros, J., Svensson, B., Holmen, G., Phys. Rev. R 30, 3629 (1984).Google Scholar
8. Callcott, R. A., Kay, J. W. Mac, Phys. Rev. 161, 698 (1967).CrossRefGoogle Scholar
9. Massarani, B., Bourgoin, J. C., Phys. Rev. B underline 14, 3682 (1976).Google Scholar
10. Pons, D., Mooney, P., Bourgoin, J.C., J. Appl. Phys. 51, 2038 (1980).CrossRefGoogle Scholar
11. Luzzi, D. E., Mori, H., Fujita, H., and Meshii, M., Mat. Res. Soc. Symp. Proc. 51, 479 (1986).Google Scholar
12. Nieh, C. W., Lin, T. L., and Fathauer, R. W., J. Appl. Phys. (in press).Google Scholar
13. Hobbs, L. W., in Introduction to Analytical Electron Microscopy, editted by Hren, J. J., Goldstein, J. I., and Joy, D. C. (Plenum Press, New York, 1979), p.437480.CrossRefGoogle Scholar