Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T05:12:04.721Z Has data issue: false hasContentIssue false

The Electronic Structure of Carbon Nitride

Published online by Cambridge University Press:  22 February 2011

Ariel A. Valladares
Affiliation:
Instituto de Investigaciones en Materiales, UNAM, Apartado Postal 70-360, México, D.F., 04510, MEXICO. Tel.52(5)622-4642, e-mail sansores@redvax1.dgsca.unam.mx
L. Enrique Sansores
Affiliation:
Instituto de Investigaciones en Materiales, UNAM, Apartado Postal 70-360, México, D.F., 04510, MEXICO. Tel.52(5)622-4642, e-mail sansores@redvax1.dgsca.unam.mx
Get access

Abstract

Recently there has been very much interest in understanding the structure of amorphous carbon nitride thin films, it has been shown that the introduction of nitrogen in amorphous carbon leads to better properties. In this paper we use four different cluster to study the changes in the local density of states at the carbon and nitrogen sites introduced by different environments. The method used is a SCF Hartree-Fock using pseudo potentials. We have considered carbons with sp3 and nitrogens with sp2 and sp3 hybridization. The results show that when N occupies a tetrahedral position (sp3) it introduces a localized state in the gap, while in the sp2 configuration, it introduces states near the edges of the bands.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Sansores, L.E., Valladares, R.M., Cogordan, J.A. and Valladares, A.A., Mat. Res. Soc. Symp. Proc. Vol. 209, 183 (1991).Google Scholar
[2] Sansores, L.E., Valladares, R.M., Cogordan, J.A. and Valladares, A.A., J. Non-Cryst. Solids 143, 232 (1992).Google Scholar
[3] Sansores, L.E., Valladares, R.M., and Valladares, A.A., J. Non-Cryst. Solids 144, 115 (1992).Google Scholar
[4] Franceschini, D.F. and Achetem, C.A., Appl. Phys. Lett. 60, 3229 (1992).Google Scholar
[5] Amir, O. and Kalish, R., J. Appl. Phys. 70, 4958 (1991).Google Scholar
[6] , He-Xiang and Feldman, Bernard J., Mat. Res. Soc. Symp. Proc. 95, 347 (1987).Google Scholar
[7] Lin, S., Noonan, Kevin and Feldman, Bernard J., Solid State Comm. 80, 101 (1991).Google Scholar
[8] Liu, Amy Y. and Cohen, Marvin L., Phys. Rev. B41, 10727 (1990).Google Scholar
[9] Wang, C.Z., Ho, K.M. and Chan, C.T., Phys. Rev. Letters 70, 611 (1993).Google Scholar
[10] Robertson, J., Phil. Mag. B 66, 199 (1992).Google Scholar
[11] Robertson, J. and O'Reilly, E.P., Phys. Rev. B35, 2946 (1987-II).Google Scholar
[12] Tersoff, J., Phys. Rev. B44, 12039 (1991-I).Google Scholar
[13] Barthelat, J.C., Durand, Ph. and Serafini, A., Mol. Phys. 33, 159 (1977).Google Scholar
[14] Dupuis, M., Rys, J. and King, H. F., Quantum Chemistry Programme Exchange 11, 338 (1977); J.P. Daudey, Pseudopotential Adaptation, Universit6 Paul Sabatier, unpublished.Google Scholar
[15] Tagdiena-Martfnez, J., Barrio, R.A., Sansores, L.E., Les, A. and Ortega-Blake, I., J. Non-Cryst. Solids 111, 178 (1989).Google Scholar
[16] Stewart, J.J.P., J. Computer-Aided Mol.Design, 4, 1 (1990).Google Scholar