Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T00:14:23.342Z Has data issue: false hasContentIssue false

Electronic Structure and Total-Energy of FeSi2 Pseudomorphic Phases

Published online by Cambridge University Press:  03 September 2012

Leo Miglio
Affiliation:
Dipartimento di Fisica dell'Università, via Celoria 16, 1-20133 Milano, Italy
Giovanna Malegori
Affiliation:
Dipartimento di Fisica dell'Università, via Celoria 16, 1-20133 Milano, Italy
Get access

Abstract

By fitting orthogonal tight binding parameters to the ab inlio bands of Calciumfluorite FeSi2 (γ-phase) and Cesiumcloride FeSi, we calculate the electronic structure (bands and density of states) and the total-energy of the semiconductive, orthorombic β-phase and the disordered, cubic one. The latter, the γ and the β nfigurations, have been recently observed at different annealing temperatures in thin films grown on Si (111) by Molecular Beam Epitaxy. The transferability of our method among different phases allows for a comparison of the cohesive energy curves which, in turn, supplies an interpretation of the relative stability and the growth kinetics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Onda, N., Sirringhaus, H., Goncalves-Conto, S., Schwarz, C., Mueller-Gubler, E. and Kaenel, H. von, in Evolution of Surface and Thin Film Microstructures, edited by Atwater, H.A., Chason, E., Grabow, M., Lagally, M. (Mater. Res. Soc. Proc. 280, Pittisburgh PA, 1992).Google Scholar
2. Kaenel, H. von, Maeder, K.A., Mueller, E., Onda, N. and Sirringhaus, H., Phys. Rev B45, 13807 (1992).CrossRefGoogle Scholar
3. Sirringhaus, H., Onda, N., Mueller-Gubler, E., Mueller, P., Stalder, R. and Kaenel, H. von, Phys. Rev. B47, 10567 (1993).CrossRefGoogle Scholar
4. Dusausoy, Y., Protas, J., Wandji, R. et Roques, B., Acta Cryst. B27, 1209 (1971).CrossRefGoogle Scholar
5. The experimental estimation for the y-phase lattice parameter is just a lower limit. LMTO and FLAPW results give 5.32 A and 5.39 A, respectively. For the 13-phase an “effective” cubic lattice parameter can be estimated by taking the cubic root of 1/4 of the orthorombic volume.Google Scholar
6. Kaenel, H. von (private communication).Google Scholar
7. Maeder, K.A., Kaenel, H. von and Baldereschi, A., Phys. Rev B48, 4364 (1993).CrossRefGoogle Scholar
8. Christensen, N.E., Phys. Rev. B42, 7148 (1990).CrossRefGoogle Scholar
9. Slater, J.C. and Koster, G.F., Phys. Rev. B94, 1498 (1954).CrossRefGoogle Scholar
10. Harrison, W.A., Electronic Structure and the Properties of Solids (W.H. Freeman Company, San Francisco 1980).Google Scholar
11. Malegori, G. and Miglio, L., Phys. Rev: B48, 9223 (1993).CrossRefGoogle Scholar
12. Onda, N., Sirringhaus, H., Steiner, P. and Kaenel, H. von, in Evolution of Surface and Thin Film Microstructures, edited by Atwater, H.A., Chason, E., Grabow, M., Lagally, M. (Mater. Res. Soc. Proc. 280, Pittisburgh PA, 1992).Google Scholar
13. Christensen, N.E. (private communication).Google Scholar