Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-16T20:49:40.767Z Has data issue: false hasContentIssue false

The Electronic Structure And Phase Stabilities Of Metallic Alloys

Published online by Cambridge University Press:  28 February 2011

B.L. Györffy
Affiliation:
H.H. Wills Pilysics Laboratory. University of Bristol. Bristol BSS ITL., U.K.
A. Barbieri
Affiliation:
H.H. Wills Pilysics Laboratory. University of Bristol. Bristol BSS ITL., U.K.
D.D. Jolnsoni
Affiliation:
Santdia Na.t.itinal I Laboratories. Livermlore, California 94551-0969., U.S.A. Suplioriod by Department of Energy, Basic Energy Sciences, Division of Material Scieinces
D.M. Nicholson
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory. Oak Ridge, Tennesser 37831., U.S.A. Work supported by Department of Energy, Conservation and Renewabe Energy, Office of Industrial Teochnilogies. Advanced Industrial Materials, under subcontract. DEAC05-84OR21400 with MartinMarietta Energy Systems
F.J. Pinski
Affiliation:
Department of Physics.Uniiversity of Cincinnadi Cincinnati, Ohio 45221., U.S.A.
W.A. Shelton
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory. Oak Ridge, Tennesser 37831., U.S.A. Work supported by Detpartmnent of Energy, Basic Energy Sciences, Division of Material Sciences, under subcontract, DEAC05-840R21400 with MartinMarietta Energy Systems. Pesent. address: Naval Research Laboratory, Washington DC
G.M. Stocks
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory. Oak Ridge, Tennesser 37831., U.S.A. Work snupported by Departiient of Energy, Basic Eniergy Sciences, Division of Material Sciences, under subcontract DEAC05-84O0R2I400 with Martin-Marietta Energy Systems, and by a grant of comntiter time at NERSC from DOE,-BES-DMS
Get access

Abstract

Condensed matter consists of positively charged atomic nuclei and the electron glue which holds them together. Although it is attractive to attempt to oilodl it by nentral atoms interacting via. relatively weak pairwise ‘effective interactions’ in genbreak down the predictive and inter;retative power of the analysis. Hence, there is no substitute to forging a parameter-free and quantitative theory of the complex degenerate Fermi liquid ‘glue’ to complement phenomenological calculations. Such theory is the general aim of ’first-principles’ calculations of the electronic structure. This talk will concern past present and future first-principles calculations relevant it the state of compositional order in metallic alloys. Special attention will be paid to phaase insta bilities induced by Fermi Surface effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Alper, A. M.. Phase Diagrams - Material Scietnce and Technology, volume 6:1–:3. Academic Press. New York, 1970.Google Scholar
[2] Huutme-Rothery, W. and Coles, B. R.. Atomic Theory for students of Metallugy. The Institute of Metals, London, fifth edition. 1965.Google Scholar
[3] Darken, L. S. and Gurry, R. W.. Physical Chemistry of Metals. McGraw-Hill Inc., New York, 1953.Google Scholar
[4] Miedema, A. H., Chalel, P. F. de, and Boer, F. R. de. Physica, (100):1. 1980.Google Scholar
[5] Pettifor, D. G.. Quantum mechanics in alloy design. In Socks, G. M. and Gonis, A.. editors, Alloy Phase, Stability, volume 163, pages :329–:150, Dordrecht (NL), 1989. NAFO ASI Series E. Kluwer Academic Publishers.Google Scholar
[6] Kaufman, L. Computer based thermochemecal modeling of multicomponent phase diagrams. In Stocks, G. M. and Goniis, A.., editors, Alloy Phase stabililty, Volume 163, pages 145176. Dordrecht. (NL), 1989. NATO ASI Series E, Kluwer Academic Publishers.Google Scholar
[7] Fontaine, D. de. Solid State Physics, volume 34 of Advances in Research and Application, Chapter Configurational Thermodynamics of Solid Solutions, pages 74–27. Academic Press,. New York, 1979.Google Scholar
[8] Binder, K.. AMottle Carlo Methods in Statistical Physics. Springer, Berlin. secoud edition, 1979.Google Scholar
[9] Stocks, G. M. annd Winter, H.. In Phariseau, P. and Temmernamm, V. M.. editors. Electrotuic Structurte of Complex Systems. volume 11:3. New York, 1981. NATO ASI Series B, Plenum Press.Google Scholar
[10] Ducastelle, F.. Electronic structure, effective pair interactions annd order in alloys. In Stocks, G. M. and Gonis, A., editors, Alloy Phlsu. Solbility. volume 16:3, pages 293–:328, Dordrecht (NL), 1989. NATO ASI series E. lNnser Academic Pumbhishers.Google Scholar
[11] Cotinols, J. W. D. and Williamms, A. R.. Phys. fet. B, (27):51695172. 1983.Google Scholar
[12] Kohn, W. and Vashista, P.. Theoruy of the Jnhomogeneouus Electron Gas, chapter Density Functional Theory, pages 79147. Physics of Solids amnd Liquids. Plenum Press,. New York, 1983.Google Scholar
[13] Elliot, R. J.. Kruuhansl, J. A., and Leath, P. L.. Rcv. Alod. Phys., (46):465. 1974.Google Scholar
[14] Johnson, D. D., Nicholson, D. M., Pimsky, F. J., Gyöffy, B. L., and Stocks, G. M.. submitited to Phnys. Rev.. 1990.Google Scholar
[15] lanack, J. F.. Phys. Rev. B, (9):39853988, 1974.Google Scholar
[16] Hansen, M.. Constitutiont of Binary Alloys. McGra.w-iill, New York, 1958.Google Scholar
[.17]Györffy, B. L., Johnson, D. D., Pinsky, F. J.. Nicholson, D. M., and Stocks, G. M.. Thn eldctrnic structure aund the state of compositional order in metallic ailloniys. Inn Stochs, G. M. and Contis, A., editors, A lloy Phase Stability. vohlumue 16:3., pages 421–168, Dordrecht (NL), 1989. NATO ASI Series E, Kinuwer Academnic Publishers.Google Scholar
[18] Gyöffy, B. L. and Stocks, G. M.. Phys. Rev. Left.. (50):374, 1983.Google Scholar
[19] Fisher, M. E.. J. ihsth. Phys., (5):914, 1964.Google Scholar
[20] Krivlogaz, M. A.. Theory of X-ray and Thermal Neuutron scatterityg by Rrasl Crystals. Plenumn Press, New York, 1969.Google Scholar
[21] Oshima, K.. and Watatabe, D.. Acta Criyst. (32):883892, 1976.Google Scholar
[22] Kuulik, J.. Takeda, S.., and Foontaiine, D. de. Ichu Aloll., (T35):11371147. 1987.Google Scholar
[23] Kulik, J. and Fontaine, D. de. J. P-s. C (21):L291, 1988.Google Scholar
[24] Ceder, C.. Grae, M. de Delacy, f. L., Kulik, J.. and Fonuttaine, D. de. Phis. Rev. B (39): 381385, 1989.Google Scholar
[25] Khachàcturian, A. G. Hajagopa, A. K.. Am. Chdr. Phys. (41):59, 1980.Google Scholar
[27] Broddit, D.. Tendeloo, G. Vain, Lalmdduyt, J. Van, Amnelinckx, S., and Craef, M. de. Phil. May..A. (59):979998. 1989.Google Scholar
[28] Faswcett, E.. f.v. Hod. Phys., (60):209. 1988.Google Scholar
[29] Wilson, J. A.. Salvo, F. J. di, and Mlahmahajal, F.. Adv. Phys., (24):117, 1975.Google Scholar
[30] Sato, I. and Toth, R. S.. Allloyiing Behaviouur and Effectls in Concentrattd Solid Somitiots. Gordon amnd Breach, New York, 1965.Google Scholar
[31] Berko, S.. Fermuti suroface studies inl disorldered allotss: Positron ani imihlat.iomm explriummennts. Inn Phariseati. Gyöffy, B. L. and Scheire, L.. editors. Elcctrotts it Disomdered cilals outd Aitallic Sittfaccs, volhnumme 42, pages 239292, New York, 1970. NATO ASI Series B, Plenum Press.Google Scholar
[32] Denieth, J. E.. Presson, B. N.. Holtzherg, C.. and Chandrasekhiar, C. V.. Phys. Rev. Lett., (64):603. 1990.Google Scholar
[:33]Varma, C. V.. and Sirnons, A. L.. Phys. Rev. Let.. (51):138, 1983.Google Scholar
[3.1]Pei, S., Zaluzec, N. J., Jorgensen, J. D.. Dabroswsky, B., Hinks, D. G., Mlitchel, A. W., and Richard, D. F.. Phys. Rev. B, (39):811, 1990.Google Scholar
[35] Pei, S., Jorgensen, J. D., Dabrosnwsky, B., Hinks, D. G. Richard, D. R., Mitchel, A. W., Nesvsani, T. M., Sinhla, S. K., Vaknin, D., aund Jacobson, A. J.. to be published it Phu ys. B u., 1990.Google Scholar
[36] Sheltoon, W. A., Barbieri, A.. Gyöffy, B. L., Pinsky, F. J., and Stocks, G. M.. to be published, 1990.Google Scholar
[37] Toledamno, J. C. and Toletdaino, P.. The Lundauu Theory of Phase Transitions. Wortd Scienmlific Pulblishing, 1987.Google Scholar
[38] Lyularskii, C. Y.. Applicatioun of Grooup Theory in Phiysics. Pergalnom Press, New York, 1960.Google Scholar
[39] Aitit, D. J.. Field Theory. thf Reenormalizafliot Group, and Critical Phi-nomeue. World Scientific Publishing, 1984.Google Scholar
[40] Meais-Lira, F.. Benneman, K. H., and Morsunm-Lopez, J. L.. Phys. Reiv. B. (32):59255931, 1985.Google Scholar
[41] McLean, S. B.. Grmin Boundaries ilt Solids. Oxford University Press, Oxford, 1957.Google Scholar
[42] Croxton, C. A.. Fluid ut rfacial Phcnoemoueua. John Wiley and Sons, New York, 1986.Google Scholar
[43] Dosch, H. and Persl, J.. J. Physique. (snuimipl. 50):C7–257. 1989.Google Scholar