Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-08T15:43:54.188Z Has data issue: false hasContentIssue false

Electronic Structure and Derived Linear and Nonlinear Optical Properties of Chalcopyrites

Published online by Cambridge University Press:  10 February 2011

Walter R. L. Lambrecht
Affiliation:
Department of Phyiscs, Case Western Reserve University, Cleveland, Oh 44106-7079
Sukit Limpijumnong
Affiliation:
Department of Phyiscs, Case Western Reserve University, Cleveland, Oh 44106-7079
Benjamin Segall
Affiliation:
Department of Phyiscs, Case Western Reserve University, Cleveland, Oh 44106-7079
Get access

Abstract

The electronic band structures were calculated for a number of chalcopyrites in both the II-IV-V2 and I-III-VI2 families using the linear muffin-tin orbital method. From these band structures, the second harmonic generation coefficients were calculated using a recently developed methodology in which a separation is made of inter- and intraband contributions. We found that the high value of d36 in CdGeAs2 is in large part due to the fact, that in this material, unlike in the other chalcopyrites, almost no compensation occurs between inter- and intraband contributions, the former one being unusually small. For the case of ZnGeP2, a detailed investigation of the band structure, reveals that it has an indirect band gap rather than a pseudodirect one. The implications of this for the interpretation of the optical spectra are discussed. Finally, for the I-III-VI2 materials, we find that the Te based materials have far higher d36 than the selenides. Combined with their potential for non-critical phase matching, this makes AgGaTe2 an interesting compound.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Emergence of Chalcopyrites as Nonlinear Optical Materials,” MRS Bulletin, Volume 23, No. 7 (1998), Guest Editors: Ohmer, M. C. and Pandey, R..Google Scholar
2. Schunemann, P. G. and Pollak, T. M., in Ref. [1], p. 23, and refs. therein.Google Scholar
3. Catella, G. C. and Burlage, D., in Ref. [1], p. 28 and refs. therein; G. C. Catella, L. R. Shiozawa, J. R. Hietanen, R. C. Eckardt, R. K. Route, R. S. Feigelson, D. G. Cooper, and C. L. Marquardt, Appl. Opt. 32, 21 (1993).Google Scholar
4. Sipe, J. E. and Ghahramani, E., Phys. Rev. B 48, 11705 (1993).Google Scholar
5. Aversa, C. and Sipe, J. E., Phys. Rev. B 52, 14636 (1995).Google Scholar
6. Rashkeev, S. N., Limpijumnong, S. and Lambrecht, W. R. L., Phys. Rev. B 59, 2737 (1999).Google Scholar
7. Limpijumnong, S., Lambrecht, W. R. L. and Segall, B., Phys. Rev. B 60, 8087 (1999).Google Scholar
8. Aspnes, D. E., Phys. Rev. B 6, 4648 (1972).Google Scholar
9. Ghahraramani, E., Moss, D. J., and Sipe, J. E., Phys. Rev. B 41, 1542 (1991).Google Scholar
10. Lifschitz, E. M. and Pitaevskii, L. P., in Statistical Physics, Part 2, Landau and Lifschitz Course of Theoretical Physics, Vol. 9, (Pergamon Press, Oxford 1980), Chapter VI, p. 223.Google Scholar
11. Blount, E. I. in Solid State Physics, Advances in research and Applications, ed. Seitz, F. and Turnbull, D. (Academic, New York, 1962 ) Vol. 13, p. 305.Google Scholar
12. Genkin, V. M. and Mednis, P., Zh. Eksp. Theor. Fizz. 54, 1137 91968) [Sov. Phys. JETP 27, 609 (1968)]; Fiz. Tverd. Tela (Leningrad) 10, 1 (1968) [Sov. Phys. Solid State 10, 1 (1968)].Google Scholar
13. Rashkeev, S. N., Lambrecht, W. R. L., and Segall, B., Phys. Rev. B 57, 3905 (1998).Google Scholar
14. Hughes, J. L. P. and Sipe, J. E., Phys. Rev. B 57, 1363013640 (1997); Phys. Rev. B 53, 10751-10763 (1996).Google Scholar
15. Rashkeev, S. N., Limpijumnong, S., Lambrecht, W. R. L., J. Opt. Soc. Am. B (to be published).Google Scholar
16. Levine, Z. H., Phys.Rev. B 42, 3567 (1990); Z. H. Levine and D. C. Allan, Phys. Rev. B 44, 12781 (1991); Z. H. Levine, Phys. Rev. B 49, 4532 (1994); J. Chen, L. J∼nsson, J. W. Wilkins and Z. H. Levine, Phys. Rev. B 56, 1787 (1997).Google Scholar
17. Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964); W. Kohn and L. J. Sham, ibid. 140, A1133 (1965).Google Scholar
18. Levine, Z. H. and Allan, D. C., Phys. Rev. Lett. 63, 1719 (1989).Google Scholar
19. Andersen, O. K., Phys. Rev. B 12, 3060 (1975); O. K. Andersen, O. Jepsen and D. G1ötzel, in Highlights of Condensed Matter Theory, eds. F. Bassani, F. Fumi and M. P. Tosi, (north-Holland, New York 1985) p. 59, and 0. K. Andersen, 0. Jepsen, M. Sob, in Lecture Notes in Physics: Electronic Band Structure and its Applications, ed. M. Yussouff (Springer-Verlag, Berlin 1987).Google Scholar
20. Kurtz, S. K., Jerphagnon, J., and Choy, M. M., in Landolt-Bbrnstein NumericalData and Functional Relationships in Science and Technology, New Series, vol. III/il eds. Hellwege, K.-H. and Hellwege, A.M., (Springer, Berlin-Heidelberg, 1979), p. 671.Google Scholar
21. Dmitriev, V.G., Gurzadyan, G.G., and Nikogosyan, D.N., Handbook of Nonlinear Optical Crystals, Springer Series in Optical Sciences, Vol. 64 (Springer-Verlag, Berlin and Heidelberg, 1991).Google Scholar
22. Shay, J. L. and Wernick, J. H.. Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications(Pergamon Press, Oxford, 1975).Google Scholar
23. Roberts, D. A., IEEE J. Quantum Electron. 27, 142 (1992).Google Scholar
24. Sutherland, R. L., Handbook of nonlinear optics, Marcel Dekker Inc., New York 1996).Google Scholar
25. Ohmer, M. C., Goldstein, J. T., Zelmon, D. E., Waxler, A. W., Hegde, S. M., Wolf, J. D., Schunemann, P. G., and Pollak, T. M., J. Appl. Phys. 86, 9499 (1999).Google Scholar
26. Bhar, G. C., Das, S., Chatterjee, U., Datta, P. K., and Andreev, Yu N., Appl. Phys. Lett. 63, 13161318 (1993).Google Scholar
27. Zhu, X. and Louie, S. G., Phys. Rev. B 43, 14142 (1991).Google Scholar