Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-19T03:58:23.796Z Has data issue: false hasContentIssue false

Electronic States of Nanocrystalline Carbon

Published online by Cambridge University Press:  15 February 2011

G. P. Lopinski
Affiliation:
Dept. of Physics, Penn State University, University Park, PA 16802
V. I. Merkulov
Affiliation:
Dept. of Physics, Penn State University, University Park, PA 16802
J. S. Lannin
Affiliation:
Dept. of Physics, Penn State University, University Park, PA 16802
Get access

Abstract

Electron energy loss spectroscopy (EELS) has been used to investigate the electronic states of isolated, nanocrystalline carbon particles. Small carbon nanocrys-tals were prepared via sputter deposition onto SiO2 substrates, followed by annealing to 700C. The structure and size distribution of the particles have been characterized by Raman scattering, Auger electron spectroscopy and electron microscopy. EELS observations indicate that a semimetal to semiconductor transition occurs for particles smaller than lnm. In addition, hydrogen adsorption is found to significantly affect the electronic states of these particles, indicating that both finite size and dangling bond effects modify the properties of small carbon nanocrystallites.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: Steacie Institute for Molecular Sciences, National Research Council, 100 Sussex Dr., Ottawa, Ontario, Canada KlA 0R6.

References

REFERENCES

[1]Robertson, J., Adv. Phys. 35, 317 (1986).Google Scholar
[2]Robertson, J. and O'Reilly, E.P., Phys. Rev. B35, 2946 (1987).Google Scholar
[3]Stephan, U., Frauenheim, Th., Blaudeck, P., and Jungnickel, G., Phys. Rev. 49, 1489 (1994).Google Scholar
[4]Nakhimovsky, I., Lamotte, M., and Joussot-Dubien, J., Handbook of Low Temperature Electronic Spectra of Polycyclic Aromatic Hydrocarbons, Elsevier, Amsterdam, 1989.Google Scholar
[5]Leach, S. in Polycyclic Aromatic Hydrocarbons and Astrophysics, edited by Leger, A. et al. , Reidel, Dordrecht, 1987.Google Scholar
[6]Connell, G.A.N., Nemanich, R.J., and Tsai, C.C., Appl. Phys. Lett. 36, 31 (1980).Google Scholar
[7]Bacsa, W.S. and Lannin, J.S., Appl. Phys. Lett. 61, 2116 (1992).Google Scholar
[8]Nemanich, R.J. and Solin, S.A., Phys. Rev. B20, 392 (1979).Google Scholar
[9]Li, F. and Lannin, J.S., Appl. Phys. Lett. 61, 2116 (1992).Google Scholar
[10]Merkulov, V.I., Lannin, J.S. and Cowley, J.M., in this volume.Google Scholar
[11]Cowley, J.M., Ultramicroscopy 49, 4 (1993).Google Scholar
[12]Cowley, J.M., Merkulov, V.I. and Lannin, J.S., Ultramicroscopy, in press.Google Scholar
[13]Ibach, H.L. and Mills, D.L., Electron Energy Loss Spectroscopy and Surface Vibrations, Academic Press, New York, 1982.Google Scholar
[14]Froitzheim, H., Ibach, H., and Mills, D.L., Phys. Rev. B11, 4980 (1975).Google Scholar
[15]Lopinski, G.P., Fox, J.R., Lannin, J.S., Flack, F.S., and Samarth, N., Surf. Sci. B355, 355 (1996).Google Scholar
[16]Hagemmann, H.J., Gudat, W., and Kunz, C., J. Opt. Soc. Amer. 65, 742 (1975).Google Scholar
[17]Palmer, R.E., Annett, J.F., and Willis, R.F., Phys. Rev. Lett. 58, 2490 (1987).Google Scholar
[18]Lopinski, G.P. and Lannin, J.S., Appl. Phys. Lett., in press.Google Scholar
[19]Leger, A. in Experiments on Cosmic Dust Analogues, edited by Bussoletti, E. et al. , Kluwer, Dordrecht, 1988.Google Scholar
[20]Puget, J.L. and Leger, A., Ann. Rev. Astron. Astrophys. 27, 161 (1989).Google Scholar
[21]Seigren, K. in Interstellar Dust, edited by Allamondola, and Tielens, , Kluwer, Dordrecht, 1988.Google Scholar
[22]Duley, W.W. and Williams, D.A., Mon. Not. Royal Astron. Soc. 247, 647 (1990).Google Scholar
[23]Duley, W.W., Astron. Journal 445, 240 (1995).Google Scholar