Hostname: page-component-68945f75b7-tmfhh Total loading time: 0 Render date: 2024-08-05T19:44:15.130Z Has data issue: false hasContentIssue false

Electronic States in Cd1−xZnxTe/CdTe Strained Layer Coupled Double Quantum Wells and their Photoluminescence

Published online by Cambridge University Press:  28 February 2011

Tiesheng Li
Affiliation:
Department of Electrical and Computer Engineering, Ohio University, Athens, OH 45701, and J. Reno, Sandia National Laboratories, Albuquerque, NM 87185-5800
H. J. Lozykowski
Affiliation:
Department of Electrical and Computer Engineering, Ohio University, Athens, OH 45701, and J. Reno, Sandia National Laboratories, Albuquerque, NM 87185-5800
Get access

Abstract

Experimental and theoretical investigations of electronic states in a strained-layer CdTe/CdZnTe coupled double quantum well structure are presented. The optical properties of this lattice mismatched heterostructure were characterized by photoluminescence (PL), PL excitation and polarization spectroscopies. The influence of electrical field on exciton states in the strained layer CdTe/CdZnTe coupled double quantum well structure is experimentally studied. The confined electronic states were calculated in the framework of the envelope function approach, taking into account the strain effect induced by the lattice-mismatch. Experimental results are compared with the calculated transition energies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Merle d'Aubigne', Y., Le, Si Dang, Dal'bo, F., Lentz, G., Magne'a, N., and Mariette, H., Superlattices and Microstructures, 5, 367, (1989).Google Scholar
2 Mathieu, H., Allegre, J., Chatt, A., Lefebvre, P., and Faurie, J. P., Phys. Rev., B 38, 7740, (1988).Google Scholar
3 Gil, B., Dunstan, D. J., Calatayud, J., Mathieu, H., and Faurie, J. P., Phys. Rev., B40, 5522, (1988).Google Scholar
4 Allegre, J., Calatayud, J., Gil, B., Mathieu, H., Tuffigureo, H., Lentz, G., Magnea, N., and Mariette, H., Phys. Rev., B 41, 8195, (1990).Google Scholar
5 Mariette, H., Dalbo, F., Magnea, N., Lentz, G., and Tuffigureo, H., Phys. Rev., B 38 12443, (1988).Google Scholar
6 Reno, J.L., and Jones, E.D., J. Electronic Materials, 20, 315, (1991).Google Scholar
7 Li, T. and Lozykowski, H. J., Phys. Rev. B 46, 6961, (1992).Google Scholar
8 Yamanaka, K, Fukunaga, T., Tsukada, N., Kobayashi, K.L.I., and Ishii, M., Appl.Phys. Lett. 48, 840, (1986).Google Scholar
9 Austin, E.J. and Jaros, M., J. Phys. C: Solid State Phys. 19, 533, (1986).Google Scholar
10 Yu, P. W., Sanders, G.D., Reynolds, D.C., Bajaj, K.K., Litton, C.W., Klem, J., Huang, D., and Markoc, H., Phys. Rev. B35, 9250, (1987).Google Scholar
11 Andrews, S.R., Murray, C.M., Davies, R.A., and Kerr, T.M., Phys.Rev, B37, 8198, (1988).Google Scholar
12 Vina, L., Collins, R.T., Mendez, E.E., and Wang, W.I., Phys. Rev. B33, 5939, (1986).Google Scholar
13 Reno, a.J. L. and Jones, E. D., Phys. Rev. B45, 1440 (1992), b. J. P. Faurie, C. Hsu, S. Sivananthan and X. Chu, Surface Science 168, 473 (1986), c. J. L. reno, P. L. Gourley, G. Monfroy and J. P. Faurie (unpublished).Google Scholar
14 Lozykowski, H. J., Li, T., and Akir, Z. I., " Rev. Sci. Instrum., V.63, 4096, (1992).Google Scholar
15 Nimtz, G., in "Numerical Data and Functional Relationships in Science and Technology", edited by Madelung, O., Landolt-Börnstein, , New Series, Group III, Vol. 17, Part 6, Chap. 3, p. 247 (Springer-Verlag, Berlin, 1982)Google Scholar
16 Van De Walle, Chris G., Phys. Rev. B 39, 1871 (1989)Google Scholar