Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-27T04:26:12.706Z Has data issue: false hasContentIssue false

Electronic Properties of Improved Amorphous Silicon-Germanium Alloys Deposited by a Low Temperature Hot Wire Chemical Vapor Deposition Process

Published online by Cambridge University Press:  01 February 2011

Shouvik Datta
Affiliation:
Department of Physics, University of Oregon, Eugene, OR 97403, USA.
J. David Cohen
Affiliation:
Department of Physics, University of Oregon, Eugene, OR 97403, USA.
Yueqin Xu
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401,USA.
A. H. Mahan
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401,USA.
Get access

Abstract

We report novel material properties of a series of a-Si,Ge:H alloys grown by hot-wire chemical vapor deposition under low filament temperature (˜1800°C) and low substrate temperature (˜200-300°C). These alloys exhibit significantly improved electronic properties including low defect densities and sharp band tails (Urbach energies ≤ 45meV even for Ge fractions as high as 47at.%). On the other hand, comparisons of the transient photocapacitance and transient photocurrent spectra do not indicate very efficient hole collection in these materials. We found two distinct regimes of light-induced degradation in the alloy sample with 29at.% Ge fraction, possibly corresponding to the light induced increase of Ge and Si dangling bonds, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Cohen, J. David, Solar Energy Materials & Solar Cells, 78, 399 (2003).10.1016/S0927-0248(02)00445-2Google Scholar
[2] Mahan, A.H., Reedy, R.C. Jr , Iwaniczko, E., Wang, Q., Nelson, B.P., Xu, Y., Gallagher, A.C., Branz, H.M., Crandall, R.S., Yang, J., and Guha, S., MRS Symp. Proc. No. 507 (Materials Research Society, Pittsburgh, 1998), p. 119.Google Scholar
[3] Williamson, D.L., Goerigk, G., Xu, Y., and Mahan, A.H., Proceedings DOE Solar Energy Technologies Review Meeting, DOE/GO-102005-2067 (2005) p. 444.Google Scholar
[4] Xu, Y., Nelson, B. P., Willamson, D. L., Gedvilas, L. M., Reddy, R.C., Mat. Res. Soc. Symp. Proc. 762, A10.2 (2003).10.1557/PROC-762-A10.2Google Scholar
[5] Cohen, J. David and Gelatos, Avgerinos V., in Amorphous Silicon and Related Materials, edited by Fritzsche, Hellmut Vol A,(World Scientific, Singapore, 1989), p 475.10.1142/9789814434157_0016Google Scholar
[6] heath, Jennifer T., Cohen, J. David and Shafarman, William N., J. Appl. Phys. 95, 1000 (2004).10.1063/1.1633982Google Scholar
[7] Cohen, J. David and Lang, David V., Phys. Rev. B. 25, 5321 (1982). Section II A.10.1103/PhysRevB.25.5321Google Scholar
[8] Lang, D. V., J. Appl. Phys. 45, 3023 (1974).10.1063/1.1663719Google Scholar
[9] , Chih-Chiang , Chen, Zhong, Fan, Cohen, J. David, yang, Jeffrey C. and Guha, Subhendu, Phys. Rev. B. 57, R4210 (1998).Google Scholar
[10] Staebler, D. L. and Wronski, C. R., Appl. Phys. Lett. 31, 292 (1977).10.1063/1.89674Google Scholar
[11] Palinginis, Kimon C., Cohen, J. David, Guha, Subhendu and Yang, Jeffrey C., Phys. Rev B. 63, R201203 (2001).10.1103/PhysRevB.63.201203Google Scholar