Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T22:50:41.526Z Has data issue: false hasContentIssue false

Electronic Properties of III-Nitride Surfaces and Interfaces Studied by Scanning Photoelectron Microscopy and Spectroscopy

Published online by Cambridge University Press:  31 January 2011

Cheng-Tai Kuo
Affiliation:
d933315@oz.nthu.edu.tw, National Tsing-Hua University, Physics, Hsinchu, Taiwan, Province of China
Hong-Mao Lee
Affiliation:
hongmao.li@gmail.com, United States
Chung-Lin Wu
Affiliation:
clwuphys@mail.ncku.edu.tw, National Cheng-Kung University, Physics, Tainan, Taiwan, Province of China
Hung-Wei Shiu
Affiliation:
livelive@gmail.com, National Tsing-Hua University, Physics, Hsinchu, Taiwan, Province of China
Chia-Hao Chen
Affiliation:
chchen@nsrrc.org.tw, National Synchrotron Radiation Research Center, Hsinchu, Taiwan, Province of China
Shangjr Gwo
Affiliation:
shangjr.gwo@scholarone.com, National Tsing-Hua University, Physics, Hsinchu, Taiwan, Province of China
Get access

Abstract

We report on a method based on cross-sectional scanning photoelectron microscopy and spectroscopy (XSPEM/S) for studying electronic structure of III-nitride surfaces and interfaces on a submicrometer scale. Cross-sectional III-nitride surfaces prepared by in situ cleavage were investigated to eliminate the polarization effects associated with the interface charges/dipoles normal to the cleaved surface. In contrast to the as-grown polar surfaces which show strong surface band bending, the cleaved nonpolar surfaces have been found to be under the flat-band conditions. Therefore, both doping and compositional junctions can be directly visualized at the cleaved nonpolar surfaces. Additionally, we show that the “intrinsic” valence band offsets at the cleaved III-nitride heterojunctions can be unambiguously determined.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Jang, H. W., Ihm, K. W., Kang, T. H., Lee, J. H., and Lee, J. L., Phys. Status Solidi. B 240, 451 (2003).Google Scholar
2 Lu, Y. S., Ho, C. L., Yeh, J. A., Lin, H. W., and Gwo, S., Appl. Phys. Lett. 92, 212102 (2008).Google Scholar
3 Lin, Y. S., Koa, S. H., Chan, C. Y., Hsu, S. S. H., Lee, H. M., and Gwo, S., Appl. Phys. Lett. 90, 142111 (2007).Google Scholar
4 Martin, G., Strite, S., Botchkarev, A., Agarwal, A., Rockett, A., Morkoç, H., Lambrecht, W. R. L., and Segall, B., Appl. Phys. Lett. 65, 610 (1994).Google Scholar
5 Martin, G., Botchkarev, A., Rockett, A., and Morkoç, H., Appl. Phys. Lett. 68, 2541 (1996).Google Scholar
6 Wu, C. L., Shen, C. H., and Gwo, S., Appl. Phys. Lett. 88, 032105 (2006).Google Scholar
7 King, P. D. C., Veal, T. D., Jefferson, P. H., McConville, C. F., Wang, T., Parbrook, P. J., Lu, H., and Schaff, W. J., Appl. Phys. Lett. 90, 132105 (2007).Google Scholar
8 Wu, C. L., Wang, J. C., Chan, M. H., Chen, T. T., and Gwo, S., Appl. Phys. Lett. 83, 4530 (2003).Google Scholar
9 Gwo, S., Wu, C. L., Shen, C. H., Chang, W. H., Hsu, T. M., Wang, J. S., and Hsu, J. T., Appl. Phys. Lett. 84, 3765 (2004).Google Scholar
10 Wu, C. L., Shen, C. H., Lin, H. W., Lee, H. M., and Gwo, S., Appl. Phys. Lett. 87, 241916 (2005).Google Scholar
11 Kuo, C. T., Lee, H. M., Shiu, H. W., Chen, C. H., and Gwo, S., Appl. Phys. Lett. 94, 122110 (2009).Google Scholar
12 Wu, C. L., Lee, H. M., Kuo, C. T., Gwo, S., and Hsu, C. H., Appl. Phys. Lett. 91, 042112 (2007).Google Scholar
13 Wu, C. L., Lee, H. M., Kuo, C. T., Chen, C. H., and Gwo, S., Appl. Phys. Lett. 92, 162106 (2008).Google Scholar
14 Tracy, K. M., Mecouch, W. J., Davis, R. F., and Nemanich, R. J., J. Appl. Phys. 94, 3163 (2003).Google Scholar
15 Wu, C. L., Lee, H. M., Kuo, C. T., Chen, C. H., and Gwo, S., Phys. Rev. Lett. 101, 106803 (2008).Google Scholar