Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-18T04:05:13.485Z Has data issue: false hasContentIssue false

Electronic Properties of Compact and Diluted Metal-Clusters by Impedance Spectroscopy

Published online by Cambridge University Press:  15 February 2011

U. Simon
Affiliation:
Institut för Anorganische Chemie der Universitat-GH EssenUniversitätsstr. 5–7, 4300 Essen 1
G. Schmid
Affiliation:
Institut för Anorganische Chemie der Universitat-GH EssenUniversitätsstr. 5–7, 4300 Essen 1
G. Schön
Affiliation:
Institut för Anorganische Chemie der Universitat-GH EssenUniversitätsstr. 5–7, 4300 Essen 1
Get access

Abstract

All presently published electrical and optical measurements on concentrated ligand stabilized Au55-cluster samples reveal an inter-cluster tunnel-conductivity and indicate the influence of a “quantum-size-effect” (QSE) [1],[2]. However these data do not show any initials for the separation of inter- and possible intracluster effects. In the present Raper electronic intra-cluster Properties such as the electrical “conductivity” of 1nm chemical auantum dots, their relaxation frequencies and the relevant activation enthalpies as well as the respective Properties of pairs of Au55-clusters have been investigated in comparison to diluted clusters and interpreted by means of Impedance Spectroscopy. Furthermore a method to determine the number and the density of states (DOS) in the metal-core from the measuring data by means of very simple quantum-size assumptions is presented, which is compatible with both the SIMIT[3] and the existing cluster models.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brom, H. B., Staveren, M. P. J. van, Jongh, L. J. de, Z. Phys. D 20, 281 (1991).Google Scholar
2. Kreibig, U., Fauth, K., Granqvist, C.-G., Schmid, G., Z. Phys. Chem. 169, 11 (1990).Google Scholar
3. Nimtz, G., Marquardt, P., Gleiter, H., J. Cryst. Gr. 86,, 66 (1988).CrossRefGoogle Scholar
4. Jonscher, A. K., Dielectric Relaxation in Solids, (Chelsea Dielectrics Press, London, 1983), p. 211.Google Scholar
5. Macdonald, J. R., Impedance Spectroscopy, (Wiley & Sons, New York, 1987), p. 246.Google Scholar
6. Schmid, G. et al. Chem. Ber. 114, 3634 (1981).Google Scholar
7. Kelemen, G., Lortz, W., Schön, G.. J. Mat. Sci. 24, 333 (1989).Google Scholar
8. Bl¨mel, R., PhD thesis, Universität Essen, 1992.Google Scholar
9. Penzar, Z., Ekardt., W. Z. Phys. D 17, 69 (1990).Google Scholar