Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-08T20:10:39.064Z Has data issue: false hasContentIssue false

Electronic Bandgap and Refractive Index Dispersion of Single Crystalline Epitaxial ZnGeN2

Published online by Cambridge University Press:  10 February 2011

L.D. Zhu
Affiliation:
NZ Applied Technologies, Inc., 14A Gill St., Woburn, MA01801, Lzhu@nzat.com
P.E. Norris
Affiliation:
NZ Applied Technologies, Inc., 14A Gill St., Woburn, MA01801, Lzhu@nzat.com
L.O. Bouthillette
Affiliation:
US Air Force Research Laboratory SNHC, 80 Scott Road, Hanscom AFB, MA 01731
Get access

Abstract

The electronic band gap of single crystalline ZnGeN2 epitaxial layer grown on sapphire substrate by metal organic chemical vapor deposition has been measured by optical transmission and room temperature photoluminescence. The band gap energy is 2.99eV at room temperature, and the band gap is a direct transition type. The interference oscillations of the transmission spectra together with rutile prism coupling measurements have been used to determine the r fractive index and the dispersion characteristics of the single crystal ZnGeN2 below the band gap energy. The rutile prism coupling measurement displays the wave guide modes of the film at 6 2.8nm wavelength of the He-Ne laser, enabling determination of the film thickness and refractive index precisely at the wavelength. The refractive index of ZnGeN2 crystal is 2.35 at 6328Å wavelength. The measured refractive index dispersion curve can be fitted with the first-order Sellmeier equation n2(λ) = A + λ2/(λ2-B), using fitting parameters A=4.3 1, B=0.076.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Zhu, Long D., Maruska, H. Paul, and Norris, Peter E., Yip, Pearl W., Bouthillette, Lee D., MRS Internet J. Nitride Semicond. Res. 4S1, G3.8 (1999).Google Scholar
2. Limpijumnong, Sukit, Rashkeev, Sergey N., Lambrecht, Walter R.L., MRS Internet J. Nitride Semicond. Res. 4S1, G6.11 (1999)Google Scholar
3. Hall, H. T., Science 148, p. 1,331 (1965).Google Scholar
4. Maunaye, M. and Lang, J., Mat. Res. Bull. 5, p. 793796 (1970).Google Scholar
5. Wintenberger, M., Maunaye, M., and Laurent, Y., Mat. Res. Bull. 8, p. 1049 (1973).Google Scholar
6. Larson, William L., Maruska, H. Paul, and Stevenson, David A., J. Electrochem. Soc. 121, p. 1673 (1974).Google Scholar
7. Tien, P.K., Ulrich, R. and Martin, R.J., Appl. Phys. Lett., 14, p. 291 (1969).Google Scholar
8. Ulrich, R. and Torge, R., Appl. Opt., 12, p. 2901 (1973).Google Scholar
9. Pichugin, I.G., Yaskov, D.A., Inorg. Mater. 6, 1732 (1970).Google Scholar