Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-25T19:43:06.397Z Has data issue: false hasContentIssue false

Electronic and Optical Properties of Bulk GaN and GaN/AlGaN Quantum Well Structures

Published online by Cambridge University Press:  10 February 2011

M. Suzuki
Affiliation:
Central Research Laboratories, Matsushita Electric Industrial Co., Ltd., 3–4 Hikaridai, Seikacho, Sourakugun, Kyoto 619–02, Japan, suzuki@crl.mei.co.jp
T. Uenoyama
Affiliation:
Central Research Laboratories, Matsushita Electric Industrial Co., Ltd., 3–4 Hikaridai, Seikacho, Sourakugun, Kyoto 619–02, Japan, suzuki@crl.mei.co.jp
Get access

Abstract

Electronic structures and optical gains of bulk GaN and GaN/AlGaN quantum wells (QWs) are theoretically investigated for the wurtzite and the zincblende structures, using the k-p theory. It is found that the lower crystal symmetry, that is the wurtzite, is preferable for the lower threshold carrier density in the bulk. Although the QW structure leads to symmetry lowering only in the zincblende, we can not find a significant benefit of the zincblende QWs. As for the reduction of the threshold carrier density, biaxial strains are more effective in the zincblende. However, the threshold carrier density is still higher than in the wurtzite. It is proposed that the uniaxial strain in the c-plane of the wurtzite is more useful for reducing it.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., Senoh, M., Iwasa, N. and Nagahama, S., Jpn. J. Appl. Phys. 34 (1995) L797.Google Scholar
2. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H. and Sugimoto, Y., Jpn. J. Appl. Phys. 35 (1996) L74.Google Scholar
3. Uenoyama, T. and Suzuki, M., Appl. Phys. Lett. 67 (1995) 2527.Google Scholar
4. Suzuki, M. and Uenoyama, T., Jpn. J. Appl. Phys. 35 (1996) 1420.Google Scholar
5. Suzuki, M. and Uenoyama, T., Jpn. J. Appl. Phys. 35 (1996) L953.Google Scholar
6. Suzuki, M. and Uenoyama, T., J. Appl. Phys. 80 (1996) 6868.Google Scholar
7. Suzuki, M., Uenoyama, T. and Yanase, A., Phys. Rev. B 52 (1995) 8132.Google Scholar
8. Suzuki, M. and Uenoyama, T., Jpn. J. Appl. Phys. 35 (1996) 543.Google Scholar
9. Fang, W. and Chuang, S. L., Appl. Phys. Lett. 67, 751 (1995).Google Scholar
10. Chow, W. W., Knorr, A. and Koch, S. W., Appl. Phys. Lett. 67, 754 (1995).Google Scholar
11. Meney, A. T. and O'Reilly, E. P., Appl. Phys. Lett. 67, 3013 (1995).Google Scholar
12. Luttinger, J. M. and Kohn, W., Phys. Rev. 97 (1955) 869.Google Scholar
13. Suzuki, M. and Uenoyama, T., Solid State Electron. 41 (1997) 271.Google Scholar
14. Suzuki, M. and Uenoyama, T., Appl. Phys. Lett. 69 (1996) 3378.Google Scholar
15. Wimmer, E., Krakauer, H., Weinert, M. and Freeman, A. J., Phys. Rev. B 24 (1981) 864.Google Scholar
16. Sheleg, A. U. and Savastenko, V. A., Izv. Akad. Nauk SSSR, Neorg. Mat. 15 (1979) 1598.Google Scholar