Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-17T17:09:34.417Z Has data issue: false hasContentIssue false

Electronic and Optical Properties of a-Si:H Films Alloyed with Sulfur

Published online by Cambridge University Press:  16 February 2011

S.L. Wang
Affiliation:
Department of Physics, University of Utah, Salt Lake City, UT 84112
Z.H. Lin
Affiliation:
Department of Physics, University of Utah, Salt Lake City, UT 84112
J.M. Viner
Affiliation:
Department of Physics, University of Utah, Salt Lake City, UT 84112
P.C. Taylor
Affiliation:
Department of Physics, University of Utah, Salt Lake City, UT 84112
Get access

Abstract

Alloying a-Si:H with small amounts of sulfur (≤ 4 × 1020 cm−3) results in a significant enhancement in the photoconductivity and a suppression of the optically-induced degradation of the photoconductivity (Staebler-Wronski effect). The Magnitudes of the activation energies for conductivity imply that these films remain essentially intrinsic in nature. When the sulfur concentration is increased to about 2 to 3 at. %, the Fermi level rises by about 0.25 eV, a fact that suggests that sulfur may act as a very inefficient dopant in a-Si:H.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chittick, R.C., Alexander, J.H. and Sterling, H.F., J. Elect Chem. Soc. 116, 77 (1969).CrossRefGoogle Scholar
2. Spear, W.E. and Le Comber, P.G., Solid State Commun. 17, 1193 (1975).CrossRefGoogle Scholar
3. Staebler, D.L. and Wronski, C.R., Appl. Phys. Lett. 31, 292 (1977); J. Appl. Phys. 51, 3262 (1980).CrossRefGoogle Scholar
4. Ganguly, G. and Matsuda, A., Phys. Rev. B 47, 3661 (1993).CrossRefGoogle Scholar
5. Mahan, A.H., Carapella, J., Nelson, B.P., Crandall, R.S. and Balberg, I., J. Appl. Phys. 69, 6728 (1991).CrossRefGoogle Scholar
6. Park, H.R., Liu, J.Z. and Wagner, S., Appl. Phys. Lett. 55, 2658 (1989).CrossRefGoogle Scholar
7. Stutzmann, M., Philos. Mag. B 60, 532 (1989).CrossRefGoogle Scholar
8. Bar-Yam, Y., Adler, D. and Joannopoulos, J.D., Phys. Rev. Lett. 57, 467 (1986).CrossRefGoogle Scholar
9. Smith, Z.E. and Wagner, S., Phys. Rev. Lett. 59, 688 (1987).CrossRefGoogle Scholar
10. Lin, G.H., Kapur, M. and Bockris, J.O'M.. Appl. Phys. Lett. 57, 300 (1990).CrossRefGoogle Scholar
11. Aljishi, S., Al-Dallal, S., Al-Alawi, S.M., Hammam, M., Al-Alawi, H.S., Stutzmann, M., Jin, S., Muschik, T. and Schwärt, R.. Solar Energy Materials 23, 334 (1991).CrossRefGoogle Scholar
12. Hamman, H., Al-Alawi, S.M., Al-Alawi, B., Al-Dallal, A., Aljishi, S. and Stutzmann, M., J. Non-Cryst. Solids 137&138, 911 (1991).CrossRefGoogle Scholar
13. Wang, S.L., Viner, J.M., Anani, M. and Taylor, P.C., J. Non-Cryst. Solids 164–166, 251 (1993).CrossRefGoogle Scholar
14. Tsai, C. C., Knights, J.C., Chang, G. and Wacker, B., J. Appl. Phys. 59, 2998 (1986).CrossRefGoogle Scholar
15. Beyer, W. and Hoheisel, B., Solid State Commun. 47, 573 (1983).CrossRefGoogle Scholar
16. Nakata, M., Wagner, S. Magee, C.W., Peterson, T.M. and Park, H.R., MRS Proc. 297, 369 (1993).CrossRefGoogle Scholar
17. Stutzmann, M., Jackson, W.B. and Tsai, C.C., Phys. Rev. B 32, 23 (1985).CrossRefGoogle Scholar