Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-11T22:14:19.009Z Has data issue: false hasContentIssue false

Electron Trapping Properties of Silicon Nitride Determined by Avalanche Injection

Published online by Cambridge University Press:  25 February 2011

Y. C. Park
Affiliation:
Materials Science Dept., Stanford University, Stanford, CA 94305
W. B. Jackson
Affiliation:
Xerox Research Center, 3333 Coyote Hill Rd., Palo Alto, CA 94304
N. M. Johnson
Affiliation:
Xerox Research Center, 3333 Coyote Hill Rd., Palo Alto, CA 94304
S. B. Hagstrom
Affiliation:
Materials Science Dept., Stanford University, Stanford, CA 94305
Get access

Abstract

This paper presents the results of a comparison of the electron trapping in plasma-enhanced chemical vapor deposited nitrides (PECVD) to low pressure CVD (LPCVD) nitrides. The electron trapping was investigated using avalanche injection of electrons from the c-Si substrate over a thermal Si02 barrier into the various nitrides. The average trapping distance was 3–20nm in the various nitrides and the density of the traps was found to be around 2X1018 cm−3 for the PECVD nitrides while the density for LPCVD nitride was about 4X1018traps cm−3.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See for example, Proceedings of the Symposium on Silicon Nitride and Silicon Dioxide Thin Insulating Films, edited by Kapoor, V.J. and Hankins, K.T., Electrochemical Soc. 87–10 (1986) and references therein.Google Scholar
2. Powell, M.J., Easton, B.C., and Hill, O.F., Appl. Phys. Lett. 38, 794 (1981).Google Scholar
3. Iqbal, A., Jackson, W.B., Tsai, C.C., Allen, J.W., and Bates, C.W. Jr., J. AppI. Phys. 61, 2947 (1987).Google Scholar
4. Krick, D.T., Lenahan, P. M., and Kanicki, J., J. Appl. Phys. 64, 3558 (1988).Google Scholar
5. Powell, M.J., van Berkel, C., French, I.D., and Nichols, D.H., Appl. Phys. Lett. 51, 1242(1987).Google Scholar
6. Chang, S., Johnson, N.M., and Lyon, S.A., Appl. Phys. Lett. 44, 316 (1984).Google Scholar
7. Nicollian, E.H. and Brews, J.R., MOS (Metal Oxide Semiconductor Physics and Technology), (J. Wiley & Sons, New York, 1982), p. 495.Google Scholar
8. DiMaria, D.J., in The Physics of SiO2 and Its Interfaces ed. by Pantelides, S. T. (Pergamon, New York, 1978), p. 160 and references therein.Google Scholar
9. Jackson, W.B., Marshall, J.M., and Moyer, M.D. Phys. Rev. B. 39, 1164 (1989).CrossRefGoogle Scholar
10. Arnett, P.C. and Yun, B.H., Appl. Phys. Lett. 26, 94 (1975).Google Scholar
11. Severi, M. and Impronta, M., Appl. Phys. Lett. 51, 1702 (1987).Google Scholar
12. Dori, L., Arienzo, M., Nguyen, T.N., Fischetti, M.V., and Stein, K. J., J. Appl. Phys. 61, 1910 (1987).Google Scholar