Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-23T06:57:31.500Z Has data issue: false hasContentIssue false

Electron Transport Phenomena in NiS2−xSex Single Crystals

Published online by Cambridge University Press:  15 February 2011

X. Yao
Affiliation:
Beckman Institute, University of Illinois, 405 N. Mathews Avenue, Urbana, IL 61801 Department of Chemistry, Purdue University, West Lafayette, IN 47907
S. Ehrlich
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, IN 47907
G. Liedlb
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, IN 47907
T. Hogan
Affiliation:
University of Houston, Physics Department, Houston TX 77204 Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL 60208.
C. Kannewurf
Affiliation:
Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL 60208.
J. M. Honig
Affiliation:
Department of Chemistry, Purdue University, West Lafayette, IN 47907
Get access

Abstract

Structural studies, electrical resistivity, and Seebeck coefficient measurements are reported in the range 4.2 − 300 K for single crystals of NiS2−xSex (0 ≤ x ≤ 0.71) grown from a Te melt. Over the entire temperature and composition ranges there are no large scale structural changes concomitant to a variety of magnetic ordering phenomena, and to a changeover from insulating to metallic characteristics as x increases. Thus, the evolution in transport characteristics with x can be studied without interference from the lattice; moreover, the electron count is unaffected by substitution of Se for S. The existence of anomalous peaks in resistivity as a function of temperature is attributed to significant electron correlation phenomena which allow the entropy of charge carrier to play a dominant role. The complex temperature dependence of the Seebeck coefficient is attributed to the participation of both electrons and holes in charge transport.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bouchard, R.J., Gillson, J.L., and Jarrett, H.S., Mater. Res. Bull. 8, 489 (1973).Google Scholar
2. Krill, G., Lapierre, M.F., Gautier, F., Robert, C, Czjzek, G., Fink, J., and Schmidt, H., J.Phys. C: Solid State 9, 761 (1976).Google Scholar
3. Kamada, M., Mori, N., and Mitsui, T., J.Phys. Soc. C: Solid State Phys. 10, L643 (1977).Google Scholar
4. Kwizera, P., Dresselhaus, M.S., and Adler, D., Phys. Rev. B21. 2328 (1980).Google Scholar
5. Miyadai, T., Saitoh, M., and Tazuke, Y., J. Magn. Magn. Mater. 104–107. 1953 (1992).Google Scholar
6. Sudo, S., J. Magn. Magn. Mater. 114, 57 (1992).Google Scholar
7. Klemm, D.D., N. Jahr. Miner. Monat. 1962. 32. Google Scholar
8. Jarrett, H.S., Bouchard, R.J., Gillson, J.L., Jones, G.A., Marcus, S.M., and Weiher, J.F., Mater. Res. Bull, 8, 877 (1973).Google Scholar
9. Gautier, F., Krill, G., Lapierre, M.F., Panissod, P., Robert, C., Czjzek, G., Fink, J., and Schmidt, H., Phys. Lett. 53A, 31 (1975).Google Scholar
10. Czjzek, G., Fink, J., Schmidt, H., Krill, G., Lapierre, M.F., Pannisod, P., Gautier, F., and Robert, C., J. Magn. Magn. Mater. 3, 58 (1976).Google Scholar
11. Ogawa, S., J. Appl. Phys. 50, 2308 (1979).Google Scholar
12. Takano, H. and Okiji, A., J. Phys. Soc. Jpn. 50, 3835 (1981).Google Scholar
13. Yao, X. and Honig, J.M., Mater. Res. Bull. 29, 709 (1994).Google Scholar
14. Yao, X., Ehrlich, S.N., Liedl, G., and Honig, J.M., The Metal-Nonmetal Transition Revisited edited by Edwards, P.P. and Rao, C.N.R., (Taylor & Francis, London, 1995) p. 127 ff.Google Scholar
15. Yao, X., Honig, J.M., Hogan, T., Kannewurf, C., and Spadek, J., Phys. Rev. B, in the press.Google Scholar
16. van der Pauw, L. J., Philips Res. Repts. 13., 1 (1958).Google Scholar
17. Chaikin, P.M. and Kwak, J.F., Rev. Sci. Instr. 46, 28 (1975).Google Scholar
18. Marcy, H.O., Marks, T.J., and Kannewurf, C.R., IEEE Trans. Instr. Meas. 32, 756 (1990); this program also made use of the SB100 thermopower control system provided through the courtesy of MMR Technologies Inc.; Mountain View, CA.Google Scholar
19. Goodenough, J.B., J. Solid State Chem. 1, 26 (1971).Google Scholar
20. Harman, T.C. and Honig, J.M., Thermoelectric and Thermomaanetic Effects and Applications.(McGraw-Hill, New York, 1967), Chap. 3.Google Scholar
21. Spałek, J., Honig, J.M., Acquarone, M., and Datta, A., J. Magn. Magn. Mater. 54–57. 1047 (1986).Google Scholar
22. Spałek, J., Datta, A., and Honig, J.M., Phys. Rev. Lett. 59, 778 (1987).Google Scholar
23. Spałek, J., J. Solid State Chem. 38, 70 (1990).Google Scholar
24. Datta, A., Honig, J.M., and Spałek, J., Phys. Rev. B44. 8459 (1991).Google Scholar
25. Metzner, W. and Vollhardt, D., Phys. Rev. Lett. 62., 324 (1989).Google Scholar
26. Müller-Hartmann, E., Z. Phys. B24., 507 (1989).Google Scholar
27. Brandt, U. and Ch., Mielsch, Z. Phys. 75, 365 (1989); 78, 295 (1990).Google Scholar
28. Georges, A. and Kotliar, G., Phys. Rev. B45, 6479 (1992).Google Scholar
29. Jarrell, M., Phys. Rev. Lett. 69, 168 (1992).Google Scholar
30. Georges, A. and Krauth, W., Phys. Rev. B48, 7167 (1993).Google Scholar
31. Th., Pruschke, Cox, D.L., and Jarrell, M., Phys. Rev. B47. 3553 (1993).Google Scholar
32. Zhang, X.Y., Rozenberg, M.J., and Kotliar, G., Phys. Rev. Lett. 70, 1666 (1993).Google Scholar