Hostname: page-component-84b7d79bbc-x5cpj Total loading time: 0 Render date: 2024-07-26T22:06:45.422Z Has data issue: false hasContentIssue false

Electron Paramagnetic Resonance Studies of Intrinsic Bonding Defects and Impurities in SiO2 Thin Solid Films

Published online by Cambridge University Press:  25 February 2011

Robert N. Schwartz
Affiliation:
Hughes Research Laboratories, Malibu, CA 90265
Marion D. Clark
Affiliation:
Hughes Research Laboratories, Malibu, CA 90265
Walee Chamulitrat
Affiliation:
Department of Chemistry, University of Houston, Houston, TX 77004
Larry Kevan
Affiliation:
Department of Chemistry, University of Houston, Houston, TX 77004
Get access

Abstract

Electron paramagnetic resonance (EPR) spectroscopy has been used to identify paramagnetic intrinsic bonding defects and impurities in as-deposited thin solid SiO2 films. Thin films grown by E-beam vacuum deposition, RF sputtering, thermal oxidation of polysilicon, plasma enhanced chemical vapor deposition (PECVD), and low pressure chemical vapor deposition (LPCVD) techniques have been examined. Some of the growth techniques yield films that have paramagnetic centers similar to those found in bulk radiation-damaged vitreous SiO2. A new temperature dependent EPR center was observed in PECVD SiO2 films and has been assigned to trapped NO2. Slow-motional EPR lineshape theory was used to analyze the temperature dependent spectra.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Griscom, D.L., J. Non-Crystalline Solids 73, 51 (1985) and references therein.Google Scholar
2. Hickmott, T.W. and Baglin, J.E., J. Appl. Phys. 50, 317 (1979).Google Scholar
3. Friebele, E.J., Griscom, D.L., and Hickmott, T.W., J. Non-Crystalline Solids 73, 351 (1985).Google Scholar
4. Schwartz, R.N., Clark, M.D., Chamulitrat, W., and Kevan, L., submitted to the J. Phys. Chem.Google Scholar
5. Yip, K.L. and Fowler, W. Beall, Phys. Rev. B 11, 2327 (1975).Google Scholar
6. Edwards, A.H. and Fowler, W. Beall, Phys. Rev. B26, 6649 (1982).Google Scholar
7. Greaves, G.N., J. Non-Crystalline Solids 32, 295 (1979).Google Scholar
8. Lucovsky, G., Phil. Mag. B 41, 457 (1980).Google Scholar
9. Ashcroft, N.W. and Mermin, N.D., Solid State Physics (Saunders College, Philadelphia, 1976).Google Scholar
10. Friebele, E.J., Griscom, D.L., Staplebrock, M., and Weeks, R.A., Phys. Rev. Letters 42, 1346 (1981).Google Scholar
11. Griscom, D.L., Phys. Rev. B 22, 4192 (1980).Google Scholar
12. O'Reilly, E.P. and Robertson, J., Phys. Rev. B 27, 3780 (1983).Google Scholar
13. Simakawa, K. and Kondo, A., Phys. Rev. B 27, 1136 (1983).Google Scholar
14. Meaudre, M. and Meaudre, R., J. Non-Crystalline Solids 68, 281 (1984).Google Scholar
15. Hickmott, T.W., J. Appl. Phys. 42, 2543 (1971).Google Scholar
16. Griscom, D.L., Nucl. Instr. and Meth. B 1 481 (1984).Google Scholar
17. Coburn, J.W. and Kay, E., Appl. Phys. Letters 18, 435 (1971).Google Scholar
18. Griscom, D.L., J. Non-Crystalline Solids 68, 301 (1984).Google Scholar
19. Griscom, D.L., J. Appl. Phys. 58, 2524 (1985).Google Scholar
20. Aleksandrov, I.V., Soviet Phys. JETP 21, 580 (1965); Teor. Eksp. Khim. 1, 80,93 (1965).Google Scholar
21. Freed, J.H., Bruno, G.V. and Polnaszek, C.F., J. Phys. Chem. 75, 3385 (1971).Google Scholar
22. Shiotani, M. and Freed, J.H., J. Phys. Chem. 85, 3873 (1981).Google Scholar