Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T01:12:43.136Z Has data issue: false hasContentIssue false

Electron Microscopy at Atomic Resolution

Published online by Cambridge University Press:  21 February 2011

R. Gronsky*
Affiliation:
National Center for Electron MicroscopyMaterials and Molecular Research DivisionLawrence Berkeley LaboratoryBerkeley, California 94720
Get access

Abstract

The direct imaging of atomic structure in solids has become increasingly easier to accomplish with modern transmission electron microscopes, many of which have an information retrieval limit near 0.2nm point resolution. Achieving better resolution, particularly with any useful range of specimen tilting, requires a major design effort. This presentation describes the new Atomic Resolution Microscope (ARM), recently put into operation at the Lawrence Berkeley Laboratory. Capable of 0.18nm or better “interpretable” resolution over a voltage range of 400 kV to 1000kV with ± 40° biaxial specimen tilting, the ARM features a number of new electron-optical and microprocessor-control designs. These will be highlighted, and its atomic resolution performance demonstrated for a selection of inorganic crystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Horiuchi, S., Ultramicroscopy 10, 229 (1982).CrossRefGoogle Scholar
2. Goodman, J.W., Introduction to Fourier Optics, McGraw-Hill, New York (1968).Google Scholar
3. Cowley, J.M. and Moodie, A.F., Proc. Phys. Soc. 76, 378 (1960).CrossRefGoogle Scholar
4. Frank, J., Optik. 38, 519 (1973).Google Scholar
5. Fejes, P.L., Acta Cryst A33, 109 (1977).CrossRefGoogle Scholar
6. Scherzer, O., J. Appl. Phys. 20, 20 (1949).CrossRefGoogle Scholar
7. Spence, J.C.H., Experimental High Resolution Electron Microscopy, Clarendon Press, Oxford (1981).CrossRefGoogle Scholar
8. Saxton, W.O., Computer Techniques and Image Processing in Electron Microscopy, Academic Press, New York (1978).Google Scholar
9. Gronsky, R. in 38th. Annual Proc. Electron Microscopy Soc. Amer., San Francisco, Bailey, G.W. (ed.), p. 2 (1980).Google Scholar
10. Gronsky, R. and Thomas, G. in 41st Annual Proc. Electron Microscopy Soc. Amer., Phoenix, Bailey, G.W. (ed.), p. 310 (1983).Google Scholar
11. Watanabe, H., Honda, T., Tsuno, K., Kitajima, H., Katoh, S., Baba, Y., Kobayashi, H., Yoshimura, N., Itoh, T., Harada, Y., Sakurai, S., Noguchi, Y., and Etoh, T. in Proc. Seventh Int. Conf. on High Voltage Electron Microscopy, Berkeley, Fisher, R.M., Gronsky, R. and Westmacott, K.H. (eds.), p. 5 (1983).Google Scholar
12. Steeds, J.W. in Introduction to Analytical Electron Microscopy, Hren, J.J., Goldstein, J.I. and Joy, D.C. (eds.), Plenum, New York, p. 387 (1979).CrossRefGoogle Scholar
13. Tsuno, K. and Honda, T., Optik 64, 367 (1983).Google Scholar
14. Thon, F., Z. Naturforsch 20a, 154 (1965).CrossRefGoogle Scholar
15. A User's Guide to the National Center for Electron Microscopy is available upon request from Moore, M., NCEM, Lawrence Berkeley Laboratory, Berkeley, California 94720.Google Scholar