Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-14T20:25:16.031Z Has data issue: false hasContentIssue false

Electron Irradiation of Graphene Field Effect Transistor Devices

Published online by Cambridge University Press:  02 August 2013

Sung Oh Woo
Affiliation:
Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843-4242, U.S.A.
Winfried Teizer
Affiliation:
Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843-4242, U.S.A. WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan.
Get access

Abstract

We report the effects of electron irradiation on graphene Field Effect Transistor (FET) devices. We irradiated the graphene devices with 30keV electrons and measured the electrical transport properties in high vacuum in-situ. Upon electron irradiation, a Raman ‘D’ band appears. In addition, we observed that the doping behavior of the graphene devices changed from P to N type as a result of the irradiation. We also observed a shift of the Dirac point while the graphene FET device stays in vacuum and after it interacted with environmental molecules under ambient conditions.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Schedin, F., Geim, A. K., Morozov, S. V., Hill, E. W., Blake, P., Katsnelson, M. I., Novoselov, K. S, Nature Materials 6, 652 (2007)CrossRefGoogle Scholar
Subrahmanyam, K. S., Kumar, P., Maitra, U., Govindaraj, A., Hembram, K. P. S. S., Waghmare, U. V., Rao, C. N. R, Proc. Natl. Acad. Sci. 108, 2674 (2011)CrossRefGoogle Scholar
Jones, J.D., Mahajan, K.K., Williams, W.H., Ecton, P.A., Mo, Y., Perez, J.M., Carbon 48, 2335 (2010)CrossRefGoogle Scholar
Blakea, P. and Hill, E. W., Castro Neto, A. H., Castro Neto, A. H., Appl. Phys. Lett. 91, 063124 (2007)CrossRefGoogle Scholar
Ferrari, Andrea C., Solid State Communications 143, 47 (2007)CrossRefGoogle Scholar
Renucci, J. B., Tyte, R. N., and Cardona, M. Phys. Rev. B 11, 3885 (1975)CrossRefGoogle Scholar
Romero, H. E., Shen, N., Joshi, P., Gutierrez, H. R., Tadigadapa, S. A., Sofo, J. O., and Eklund, P. C., ACS Nano 2, 2037 (2008)CrossRefGoogle Scholar
Hashimoto, A., Suenaga, K., Gloter, A., Urita, K. and Iijima, S., nature 430, 870 (2004)CrossRefGoogle Scholar
Teweldebrhan, D. and Balandin, A. A., Appl. Phys. Lett. 94, 013101 (2009)CrossRefGoogle Scholar
Childres, I., Jauregui, L. A., Foxe, M., Tian, J., Jalilian, R. Appl. Phys. Lett. 97, 173109 (2010)CrossRefGoogle Scholar
Ryu, S., Han, M. Y., Maultzsch, J., Heinz, T. F., Kim, P., Steigerwald, M. L., and Brus, L. E., Nano Lett., 8(12), 4597 (2008)CrossRefGoogle Scholar
Jones, J. D., Hoffmann, W. D., Jesseph, A. V., Morris, C. J., Verbeck, G. F., and Perez, J. M., Appl. Phys. Lett., 97, 23 (2010).Google Scholar