Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-18T15:56:36.112Z Has data issue: false hasContentIssue false

Electron Field Emission from Nano-Diamond Films

Published online by Cambridge University Press:  17 March 2011

S.G. Wang
Affiliation:
Microelectronics Centre, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
Q. Zhang
Affiliation:
Microelectronics Centre, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
S.F. Yoon
Affiliation:
Microelectronics Centre, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
J. Ahn
Affiliation:
Microelectronics Centre, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
Q. Wang
Affiliation:
Microelectronics Centre, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
D.J. Yang
Affiliation:
Microelectronics Centre, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
Q.F. Huang
Affiliation:
Microelectronics Centre, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
Get access

Abstract

In this paper, the field emission properties of nano-diamond films were investigated by measuring the curves of emission current density (J) versus applied electric field (E). The nano-diamond films were prepared on n-type (100) silicon substrate by microwave plasma enhanced chemical vapor deposition (MPECVD) technique using a gas mixture of nitrogen-methane-hydrogen. Field emission results show that, with increasing hydrogen gas flow ratio of [H2]/[N2+CH4+H2] from 0 to 10 %, diamond grain size increases from 5 to 60 nm, threshold electric field for electron field emission increases from 1.2 to 5.75 V/μm, and emission current density decreases from 820 to 560 μA/cm2, demonstrating that small grain size nano-diamond films are promising as a cathode material for low-field electron emitters.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pate, B.B., Surf. Sci. 165, 83 (1986).Google Scholar
2. Zhu, W., Kochanski, G.P., Jin, S., Seibles, L., Jacobson, D.C., McCormack, M., White, A.E., Appl. 2Phys. Lett. 67, 1157 (1995).Google Scholar
3. Bandis, C., Pate, B.B., Appl. Phys. Lett. 69, 366 (1996).Google Scholar
4. Weide, J. van der, Zhang, Z., Baumann, P.K., Wemnsell, M.G., Bernholc, J., Nemanich, R.J., Phys. Rev. B50, 5803 (1994).Google Scholar
5. Krainsky, I.L., Asnin, V.M., Appl. Phys. Lett. 72, 2574 (1998).Google Scholar
6. Talin, A.A., Pan, L.S., McCarty, K.F., Felter, T.E., Hoerr, H.J., Bunshah, R.F., Appl. Phys. Lett. 69, 3848 (1996).Google Scholar
7. Zhirnov, V.V., Hren, J.J., MRS Bull. 23 (9), 42 (1998).Google Scholar
8. Lacher, F., Wild, C., Behr, D., Koidl, P., Diamond Related Mater. 6, 1111 (1997).Google Scholar
9. Zhou, D., Krauss, A.R., Qin, L.C., McCauley, T.G., Gruen, D.M., Corrigan, T.D., Chang, R.P.H., Gnaser, H., J. Appl. Phys. 82, 4546 (1997).Google Scholar
10. Zhu, W., Kochanski, G.P., Jin, S., Science. 282, 1471 (1998).Google Scholar
11. Cui, J.B., Stammler, M., Ristein, J., Ley, L., J. Appl. Phys. 88, 3667 (2000).Google Scholar
12. Frolov, V.D., Karabutov, A.V., Pimenov, S.M., Konov, V.I., Diamond Related Mater. 9, 1196 (2000).Google Scholar
13. Wu, K., Wang, E.G., Cao, Z.X., Wang, Z.L., Jiang, X., J. Appl. Phys. 88, 2967 (2000).Google Scholar
14. Shim, J.Y., Baik, H.K., Song, K.M., J. Appl. Phys. 87, 7508 (2000).Google Scholar
15. Okano, K., Koizumi, S., Ravi, S., Silva, P., Amaratunga, G.A.J., Nature. 389, 140 (1996).Google Scholar
16. Xu, N.S., Tzeng, Y., Latham, R.V., J. Appl. Phys. 26, 1776 (1993).Google Scholar
17. Hong, Y.K., Kim, J.J., Park, C., Kim, J.S., Kim, J.K., J. Vac. Sci. Technol. B16, 729 (1998).Google Scholar
18. Kang, W.P., Wisitsora-at, A., Davidson, J.L., Kems, D.V., Li, Q., Xu, J.F., Kim, C.K., J. Vac. Sci. Technol. B16, 684 (1998).Google Scholar
19. Gruen, D.M., MRS Bull. 26 (10), 771 (2001).Google Scholar
20. Gruen, D.M., Redfern, P.C., Horner, D.A., Zapol, P., Curtiss, L.A., J. Phys. Chem. B103 (26), 5459 (1999).Google Scholar
21. Jin, S., Mowtakas, T.D., Appl. Phys. Lett. 65, 403 (1996).Google Scholar
22. Bohr, S., Hanbner, R., Lov, B., Appl. Phys. Lett. 68, 1075 (1996).Google Scholar
23. Obraztsova, E.D., Korotushenko, K.G., Pimenvo, S.M., Ralchenko, V.G., Smolin, A.A., Konov, V.I., Loubnin, E.N., Nanostruct. Mater. 6, 827 (1995).Google Scholar
24. Stammler, M., Ristein, J., Habermann, T., Gohl, A., Janischowsky, K., Nau, D., Muller, G., Ley, L., Diamond Related Mater. 8, 792 (1999).Google Scholar
25. Badziag, P., Verwoerd, W.S., Ellis, W.P., Greiner, N.R., Nature. 343, 244 (1990).Google Scholar
26. Bergman, L., McClure, M.T., Glass, J.T., Nemanich, R.J., J. Appl. Phys. 76, 3020 (1994).Google Scholar
27. Buckley, R.J., Moustakas, T.D., Ye, L., Varon, J., J. Appl. Phys. 66, 3595 (1989).Google Scholar
28. Stiegler, J., Bergmaier, A., Michler, J., Laufer, S., Dollinger, G., Blank, E., Thin Solid Film. 352, 29 (1999).Google Scholar
29. Hong, D., Aslam, M., Feldman, M., Olinger, M., J. Vac. Sci. Technol. B(12), 764 (1994).Google Scholar
30. Zhang, Q., Yoon, S.F., Ahn, J., Gan, B., Rusli, J. Mater. Res. 15 (1), 212 (2000).Google Scholar
31. Yu, Y.C., Huang, J.H., Lin, I.N., J. Vac. Sci. Technol. B19 (3), 975 (2001).Google Scholar
32. Mao, D.S., Zhao, J., Li, W., Chen, Z.Y., Wang, X., Liu, X.H., Zhu, Y.K., Fan, Z., Zhou, J.Y., Li, Q., Xu, J.F., Materials Letter. 41, 117 (1999).Google Scholar
33. Show, Y., Matsukawa, T., Ito, H., Iwase, M., Izumi, T., Thin Solid Films. 377–378, 214 (2000).Google Scholar
34. Zhang, Q., Yoon, S.F., Ahn, J., , Rusli, Guo, Y.P., Wee, A.T.S., Huan, A.C.H., Diamond and Related Mater. 8, 215 (1999).Google Scholar