Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-17T00:27:15.020Z Has data issue: false hasContentIssue false

Electron Energy Dependence of Amorphization in Zr3Fe

Published online by Cambridge University Press:  22 February 2011

A.T. Motta
Affiliation:
Department of Nuclear Engineering, Pennsylvania State University, University Park, PA 16802, USA
L.M. Howe
Affiliation:
AECL Research, Reactor Materials Research Branch, Chalk River Laboratories, Chalk River, Ontario, Canada, K0J 1J0
P.R. Okamoto
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
Get access

Abstract

This paper reports the results from a study conducted to determine the effect of electron energy on the dose-to-amorphization of Zr3Fe at 23-30 K. Zr3Fe samples were irradiated in the HVEM at Argonne National Laboratory, at energies ranging from 200 to 900 keV. Amorphization occurred at electron energies from 900 keV down to 250 keV. Three distinct regions were observed: between 900 and 700 keV amorphization occurred at a constant low dose of ~ 4 × 1021 e cm-2; a higher plateau at 1022 was observed between 600 and 400 keV, and finally there was a sharp increase in the dose-to-amorphization below 400 keV, so that at 250 keV the necessary dose was an order of magnitude higher than that at 900 keV. In the region below 400 keV there was evidence of a dependence of the dose-to-amorphization on the orientation of the sample with respect to the electron beam. The results can be analyzed in terms of a composite displacement cross section dominated at high energies by displacements of Zr and Fe atoms, by displacements of Fe atoms at intermediate energies and of secondary displacements of lattice atoms by recoil impurities at low energies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Mogro Campero, A., Hall, E.L., Walter, J.L., and Ratkowski, A.J., in Metastable Materials Formation by Ion Implantation, (Picraux, S.T. and Choike, W.J., Eds.) (Elsevier, Lausanne), 203, (1982).Google Scholar
2 Thomas, G., Mori, H., Fujita, H. and Sinclair, R., Scripta Met. 16, 589 (1986).Google Scholar
3 Luzzi, D.E., Mori, H., Fujita, H. and Meshii, M., Acta Met. 34 (4), 629 (1986).Google Scholar
4 Luzzi, D.E. and Meshii, M., Scripta Met. 20, 943 (1986).Google Scholar
5 Kulp, D.T., Egami, T., Luzzi, D.E. and Vitek, V., Mat. Res. Soc. Symp. Proc., (Nastasi, M.A., Herbots, N., Harriott, L.R., and Averback, R.S., Eds.), Vol. 279, 505 (1993).Google Scholar
6 Devanathan, R., Lam, N.Q., Okamoto, P.R. and Meshii, M., Mat. Res. Soc. Symp. Proc., (Bristowe, P.D., Broughton, J. and Newsam, J.M., Eds.), Vol. 291, 653 (1993).Google Scholar
7 Motta, A.T. and Olander, D.R., Acta Met. & Mat. 38 (11) 2175 (1990).Google Scholar
8 Pedraza, D.F., Met. Trans. A Vol. 21A, 1809 (1990).Google Scholar
9 Xu, G., Koike, J., Okamoto, P.R. and Meshii, M., Proc. 47th EMSA Meeting, 658 (1989).Google Scholar
10 Koike, J., Luzzi, D.E., Meshii, M. and Okamoto, P.R., Mat. Res. Soc. Symp. Proc. 74, 425 (1987).Google Scholar
11 Motta, A.T., Howe, L.M. and Okamoto, P.R., J. Nucl. Mater. 205, 258 (1993).Google Scholar
12 Clinard, F.W. and Hobbs, L.W., in Physics of Radiation Effects in Crystals, (Johnson, R.A. and Orlov, A.N., Eds.), Elsevier, 387 (1986).Google Scholar
13 Lucasson, P., J. Microsc., 16, 183 (1973).Google Scholar
14 King, W.E., Benedek, R., Merkle, K.L. and Meshii, M., in Point Defect and Defect Interactions in Metals, (Takamura, J., Doyama, M. and Kiritani, M., Eds.), Univ. Tokyo, 789 (1982).Google Scholar
15 Howe, L.M., McCooeye, D.P., Rainville, M.H., Bonnett, J.D., and Phillips, D., Nuclear Instruments and Methods in Physical Research B59, 884 (1991), ibid B80/81, 73 (1993).Google Scholar
16 Aubertin, F., Gonser, U., Campbell, S.J. and Wagner, H.-G., Z. Metallk. 76, 237 (1985).Google Scholar
17 Oen, O.S.. ORNL report 4897, (1973).Google Scholar
18 Regnier, P.G., Lam, N.Q. and Westmacott, K.H., J. Nucl. Mater., 115, 286 (1983).Google Scholar
19 Mori, H., Nakajima, M. and Fujita, H., Proc. Xlth Int. Cong. on Electron Microscopy, Kyoto, 1101 (1986).Google Scholar
20 Jaouen, C., Solid State Phenomena 23&24, 123 (1992).Google Scholar
21 Butler, E.P., Rad. Eff. 42, 17 (1979).Google Scholar
22 Shoemaker, J.R., Lutton, R.T., Wesley, D., Wharton, W.R., Oehrli, M.L., Herte, M.S., Sabochik, M.J., and Lam, N.Q., J. Mat. Res. 6 (3), 473 (1991).Google Scholar