Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-17T14:09:55.100Z Has data issue: false hasContentIssue false

Electron Beam Source Molecular Beam Epitaxy of AlxGa1−Xas Graded Band Gap Device Structures

Published online by Cambridge University Press:  26 February 2011

R. J. Malik
Affiliation:
AT&T Bell Laboratories Murray Hill, NJ 07974
A. F. J. Levi
Affiliation:
AT&T Bell Laboratories Murray Hill, NJ 07974
B. F. Levine
Affiliation:
AT&T Bell Laboratories Murray Hill, NJ 07974
R. C. Miller
Affiliation:
AT&T Bell Laboratories Murray Hill, NJ 07974
D. V. Lang
Affiliation:
AT&T Bell Laboratories Murray Hill, NJ 07974
L. C. Hopkins
Affiliation:
AT&T Bell Laboratories Murray Hill, NJ 07974
R. W. Ryan
Affiliation:
AT&T Bell Laboratories Murray Hill, NJ 07974
Get access

Abstract

A new method has been developed for the growth of graded band-gap AlxGal-xAs alloys by molecular beam epitaxy which is based upon electron beam evaporation of the Group III elements. The metal evaporation rates are measured real-time and feedback controlled using beam flux sensors. The system is computer controlled which allows precise programming of the Ga and Al evaporation rates. The large dynamic response of the metal sources enables for the first time the synthesis of variable band-gap AlxGal-.xAs with arbitrary composition profiles. This new technique has been demonstrated in the growth of unipolar hot electron transistors, graded base bipolar transistors, and Mshaped barrier superlattices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Refrences

[1]Capasso, F., Ann. Rev. Mater. Sci., 16, 263 (1986).Google Scholar
[2]Harbison, J. P., Peterson, L. D., Leskoff, J., Proc. Fourth Int. Conf. MBE, U.of York, September 1986 (to be pub. J. Cryst. Growth).Google Scholar
[3]Sauer, N. J., Chang, T. Y., Dayem, A. H., Westerwick, E. H., J. Vac. Sci. Tech. B, 5, 718 (1987).Google Scholar
[4]Alavi, K., Cho, A. Y., Capasso, F., and Allam, J., J. Vac. Sci. Tech. B, 5, 802 (1987).Google Scholar
[5]Bean, J. C., Proc. Fourth Int. Conf. MBE, of York, U., September 1986 (to be pub. J. Cryst. Growth).Google Scholar
[6]Panish, M. B., Temkin, H., and Sumski, S., J. Vac. Sci. Tech. B, 8, 657 (1985).Google Scholar
[7]Shimizu, S., Tsukakoshi, O., Komiya, S., and Makita, Y., Jap. J. Appl. Phys., 24, 1130–40 (1986).Google Scholar
[8]Malik, R. J., J. Vac. Sci. Tech. B, 5, 722 (1987).Google Scholar
[9] Infieon Leybold-Heraeus Co., Syracuse, NY 13057.Google Scholar
[10]Weave, J. H., Joyce, B. A., Dobson, P. J., and Norton, N., Appl. Phys. A, 81, 1 (1983).Google Scholar
[11]Malik, R. J. and Levi, A. F. J., Appl. Phys. Lett., 52 (1988).Google Scholar
[12]Hayes, J. R. and Levi, A. F. J., IEEE J. Quantum Electron., QE-22, 1744 (1086).Google Scholar
[13]Heiblum, M., Nathan, M. I., Thomas, D. C., and Knoedler, C. M., Phys. Rev. Lett., 55, 2200 (1985).Google Scholar
[14]Kawabe, M., Kondo, M., Matsuura, N., and Yamamoto, K., Jpn. J. Appl. Phys., 22, L64 (1983).Google Scholar
[15]Levine, B. F., Bethea, C. G., Tsang, W. T., Capasso, F., Thornber, K. K., Fulton, R. C., and Kleinman, D. A., Appl. Phys. Lett., 42, 769 (1983).Google Scholar
[16]Malik, R. J., Capasso, F., Stall, R. A., Kiehl, R. A., Ryan, R. W., Wunder, R., and Bethea, C. G., Appl. Phys. Lett., 46, 600 (1985).Google Scholar
[17]Levine, B. F., Choi, K. K., Bethea, C. G., Walker, J., and Malik, R. J., Appl. Phys. Lett., 50, 1092 (1987).Google Scholar
[18]Choi, K. K., Levine, B. F., Bethea, C. G., Walker, J., and Malik, R. J., Appl. Phys. Lett., 50, 1814 (1987).Google Scholar