Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-07-04T17:40:20.653Z Has data issue: false hasContentIssue false

Electrical Transport in Heavily B-Doped Epitaxial Diamond and NCD

Published online by Cambridge University Press:  01 February 2011

Milos Nesladek
Affiliation:
milos.nesladek@cea.fr, CEA Saclay, DRT, Bat 451, p. 84, Gif Sur Yvette, N/A, France, +33169088704
Phillipe Bergonzo
Affiliation:
philippe.bergonzo@cea.fr, CEA, DRT-LIST, Saclay, Bat 451, p.84,, Gif sur Yvette, 91191, France
Jiri Mares
Affiliation:
semicon@fzu.cz, Czech Academy of Sciences, Institute of Physics, Cukrovarnicka 10, Praha 6, 16000, Czech Republic
Pavel Hubik
Affiliation:
hubik@fzu.cz, Czech Academy of Sciences, Institute of Physics, Cukrovarnicka 10, Praha 6, 16000, Czech Republic
Get access

Abstract

This paper deals with a LT transport study in B-doped diamond. To understand the electrical transport in heavily B-doped diamond and the influence of disorder onto the electrical transport, we have prepared nanocrystalline and epitaxial B-doped diamond films at CEA Saclay. The transport properties of these layers have been studied at the Institute of Physics Czech Academy of Sciences in Prague. It has been found that our B-doped nanocrystalline diamond exhibits also the SC transition, similarly as the original Russian work done on HPHT polycrystals or single crystal diamond. Additionally, the properties of (111) epitaxial films are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Ekimov, E A, Sidorov, V A, Bauer, E D, Mel'nik, N M, Curro, N J, Thompson, J D and Stishov, S M (2004) Nature 428 542–5.Google Scholar
[2] Yang, W., Auciello, O., Butler, J. E., Cai, W., Carlisle, J. A., Gerbi, J. E., Gruen, D. M., Knickerbocker, T., Lasseter, T. L., Russell, J.N., Smith, L. M., and R. J. Hamers Nature Materials 1, 253–257 (2002).Google Scholar
[3] Bustarret, E., Gheeraert, F., and Watanabe, K., Phys. Rev. Lett. 93, 237005 (2004).10.1103/PhysRevLett.93.237005Google Scholar
[4] Yokoya, T., Nakamura, T., Matsushita, T., Muro, T., Takano, Y., Nagao, M., Takenouchi, T., Kawarada, Y., and Oguchi, T., Nature 438, 647 (2005).Google Scholar
[5] Nesladek, M., Tromson, D., Bergonzo, P., Mares, J. J., Hub�k, P., Kristofik, J., Appl. Phys. Lett., 88, 12006.10.1063/1.2211055Google Scholar
[6] Mares, J. J., Hubík, P., Kritofik, J., Kindl, D., Fanta, M., Nesládek, M., Williams, O., and Gruen, D. M., Appl. Phys. Lett. 88, 092107 (2006).10.1063/1.2176853Google Scholar
[7] Williams, O., Nesladek, M., Special Issue Physica Status Solidi, edited by Koizumi, S. Nesladek, M., Nebel, C., 203, 13, 3375–338,(2006).Google Scholar
[8] Mareš, J., Hubík, P., Nesládek, M., Kindl, D. and Krišofik, J., Diamond and Related Materials, In Press, Corrected Proof, Available online7 September (2006), doi:10.1016 /j.diamond.2006.07Google Scholar
[9] Mott, N.F., Conduction in Non-Crystalline Materials, Oxford University Press, New York, 1987.Google Scholar
[10] von Smoluchowski, M., in: S. Meyer (Ed.), Festschrift Ludwig Boltzmann, Barth, Leipzig, (1904), p. 626.Google Scholar
[11] Aharonov, Y., Bohm, D., Phys. Rev. 115 (1959) 485.10.1103/PhysRev.115.485Google Scholar
[12] Cooper, N.L., Phys. Rev. 104 (1956) 1189.10.1103/PhysRev.104.1189Google Scholar