Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-18T10:43:30.640Z Has data issue: false hasContentIssue false

Electrical Properties of Thin Nitrogen-Doped Ultrananocrystalline Diamond Films

Published online by Cambridge University Press:  11 February 2011

V.I. Polyakov
Affiliation:
Institute of Radio Engineering & Electronics, RAS, 11 Mohovaya str., 103907 Moscow, Russia, E-mail: pvi@aha.ru
A.I. Rukovishnikov
Affiliation:
Institute of Radio Engineering & Electronics, RAS, 11 Mohovaya str., 103907 Moscow, Russia, E-mail: pvi@aha.ru
S.M. Pimenov
Affiliation:
General Physics Institute, 38 Vavilova str., 119991 Moscow, Russia
J.A. Carlisle
Affiliation:
Material Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
D.M. Gruen
Affiliation:
Material Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
Get access

Abstract

The electrical properties of ultrananocrystalline diamond (UNCD) films of approximately 1μm thickness were studied. UNCD films were deposited on p-type Si substrates from CH4/Ar/N2 gas mixtures using microwave plasma CVD techniques. It was found that the UNCD films with higher nitrogen concentration and higher electron conductivity have substantially higher concentration of shallow levels with activation energy of about 0.05 eV. The change of concentration, activation energy and capture cross-section of nitrogen-induced levels for UNCD films synthesized using different nitrogen concentration in the plasma was studied by charge– based deep level transient spectroscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gruen, M.G., Annu. Rev. Mater. Sci. 29, 211 (1999).Google Scholar
Gruen, D.M., MRS bulletin, 26, No 10, 771 (2001).Google Scholar
Krauss, A.R., Auciello, O., Ding, M.Q., Gruen, D.M., Huang, Y., Zhirnov, V.V., Givargizov, E.I., Breskin, A., Chechen, R., Shefer, E., Konov, V., Pimenov, S., Karabutov, A., Rakhimov, A., and Suetin, N., J. Appl. Phys. 89, 2958 (2001).Google Scholar
4. Mainwood, A., Phys. Status Solidi A. 172, 25 (1999).Google Scholar
5. Polyakov, V.I., Rukovishnikov, A.I., Rossukanyi, N.M., Ralchenko, V.G., Diamond and Related Materials 10, 593 (2001).Google Scholar
6. Collins, A.T., Diamond and Related Materials 5, 1455 (1999).Google Scholar
7. Bhattacharyya, S., Auciello, O., Birrell, J., Carlisle, J.A., Curtiss, L.A., Goyette, A.N., Gruen, D.M., Krauss, A.R., Schlueter, J., Sumant, A., Zapol, P., Appl. Phys. Lett. 79, 1441 (2001).Google Scholar
8. Zapol, P., Sternberg, M., Curtiss, L.A., Frauenheim, T., Gruen, D.M., Phys. Rev. B, 65, 045403 (2002).Google Scholar
9. Polyakov, V.I., Rukovishnikov, A.I., Rossukanyi, N.M., Varnin, V.P., Teremetskaya, I.G., Druz, B.L., Ostan, E., and Hayes, A., Mat. Res. Soc. Symp. Proc. 442, 687 (1997).Google Scholar
10. Polyakov, V.I., Rossukanyi, N.M., Rukovishnikov, A.I., Pimenov, S.M., Karabutov, A.V., and Konov, V.I., J. Appl. Phys. 84, 2882 (1998).Google Scholar
11. Miyazaki, T., Okushi, H., and Uda, T., Phys. Rev. Lett. 88, 066402 (2002).Google Scholar
12. Prins, J.F., Semicond. Sci. Technol. 16, L50 (2001).Google Scholar