Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-04-30T15:26:49.237Z Has data issue: false hasContentIssue false

Electrical Properties of Thin Film and Bulk Diamond Treated in Hydrogen Plasma

Published online by Cambridge University Press:  26 February 2011

Sacharia Albin
Affiliation:
Department of Electrical and Computer Engineering, Old Dominion University Norfolk, VA 23529.
Linwood Watkins
Affiliation:
Department of Electrical and Computer Engineering, Old Dominion University Norfolk, VA 23529.
Get access

Abstract

Current-voltage characteristics of type Ia synthetic diamond, type IIb natural diamond and free-standing diamond films were measured before and after hydrogenation. The diamond films were polycrystalline, deposited on sacrificial silicon substrates using a microwave chemical vapor deposition process. On hydrogenation, all the samples showed several orders of magnitude increase in conductivity. Hydrogenation was carried out under controlled conditions to study the changes in the I-V characteristics of the samples. The concentration of electrically active hydrogen was determined from the I-V data. Hydrogen passivation of deep traps in diamond is clearly demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Prins, J. F, Appl. Phys. Lett. 41, 950–952 (1982).Google Scholar
2. Geis, M. W., Rathman, D. D., Ehrlich, D. J., Murphy, R. A., and Lindley, W. T., IEEE Electron Device Lett. EDL–8 341343 (1987).Google Scholar
3. Panchhi, P. S. and Van Driel, H. M., IEEE J. Quantum Electron. OE–22, 101107 (1986).Google Scholar
4. Rand, S. C. and DeShazer, L. G., Optics Lett. 10, 481483 (1985)Google Scholar
5. Albin, S., Cropper, A. D., Watkins, L. C., Byvik, C. E. and Buoncristiani, A. M., Opt. Eng. 28, 281285 (1989).Google Scholar
6. Albin, S., Watkins, L., Ravi, K. and Yokota, S., Appl. Phys. Lett. 54, 2728, 1989.Google Scholar
7. Ravi, K. V. and Landstrass, M. I. in Proceedings of the 4th International High Frequency Power Conversion Conference, 1989 (Intertec Communications, Ventura, CA, 1989) p.103.Google Scholar
8. Landstrass, M. I. and Ravi, K. V., Appl. Phys. Lett. 55, 1391 (1989); 55, 975 (1989)Google Scholar
9. Pankove, J. I., Lampert, M. A., and Tarng, M. L., Appl. Phys. Lett. 32, 439 (1978).Google Scholar
10. Pankove, J. I., Carlson, D. E., Berkeyheiser, J. E., and Wance, R. O., Phys. Rev. Lett. 51, 2224 (1983).Google Scholar
11. Hansen, W L, Pearton, S. J., and Haller, E. E., Appl. Phys. Lett. 44, 606 (1984).Google Scholar
12. Sah, C. T., Sun, J. Y., and Tzou, J. J., Appl. Phys. Lett. 43, 204 (1983).Google Scholar
13. Johnson, N. M., Herring, C., and Chadi, D. J., Phys. Rev. Lett. 56, 769 (1986).Google Scholar
14. de Kock, A. J. R., Ferris, S. D., Kimerling, L. C., and Leamy, H. J., Appl. Phys. Lett. 27, 313 (1975).Google Scholar
15. Benton, J. L., Doherty, C. J., Ferris, S. D., Flamn, D. L., Kimerling, L. C., and Leamy, H. J., Appl. Phys. Lett. 36, 670 (1980).Google Scholar
16. Pearton, S. J. and Tavendale, A. J., J. Appl. Phys. 54, 1375 (1983); Phys. Rev. B 26, 7105 (1982).Google Scholar
17. Seager, C. H. and Ginley, D. S., J. Appl. Phys. 52, 1050 (1981).Google Scholar
18. Pollack, G. P, Richardson, W E, Malhi, S. D. S., Binifield, T., Shchijo, H., Banerjee, S., Elahy, M., Shah, A. H., Womack, R., and Chatterjee, P. K., IEEE Electron Device Lett. EDL 5, 468 (1984).Google Scholar
19. Pearton, S. J., Appl. Phys. Lett. 40, 253 (1982).Google Scholar
20. Fritzche, H., Tanielian, M., Tsai, C. C., and P Gaczi, J., J. Appl. Phys. 50, 3366 (1979).Google Scholar
21. Zohta, Y., Ohmura, Y., and Kanazawa, M., Jap. J. Appl. Phys. 10, 532 (1971).Google Scholar
22. Xie, Y. H., Luftman, H. S., Lopata, J., and Bean, J. C., Appl. Phys. Lett. 55, 684 (1989).Google Scholar
23. Hayes, T. R., Dautremont-Smith, W C., Luftman, H. S., and Lee, J. W., Appl. Phys. Lett. 55, 56 (1989).Google Scholar
24. Pavesi, L., Martin, D., and E Reinhart, K., Appl. Phys. Lett. 55, 475 (1989).Google Scholar
25. Paccagnella, A., Callegari, A., Braslau, N., Hovel, H., and Murakami, M., IEEE Trans. Electron Dev. ED 36, 2595 (1989).Google Scholar
26. Tsu, R., Nicolian, E. H., and Reisman, A., Appl. Phys. Lett..55, 1897 (1989).Google Scholar
27. Lampert, M. A. and mark, P., Current Inection in Solids (Academic Press, New York, 1970) p. 22.Google Scholar