Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-22T09:06:22.518Z Has data issue: false hasContentIssue false

Electrical Properties of Mesa Diodes on Epitaxial GaAs/Si

Published online by Cambridge University Press:  28 February 2011

K.L. Jiao
Affiliation:
Center for Electronic and Electro- optic Materials, State University of New York at Buffalo, 217C Bonner Hall Amherst, NY 14260
A.J. Soltyka
Affiliation:
Center for Electronic and Electro- optic Materials, State University of New York at Buffalo, 217C Bonner Hall Amherst, NY 14260
W.A. Anderson
Affiliation:
Center for Electronic and Electro- optic Materials, State University of New York at Buffalo, 217C Bonner Hall Amherst, NY 14260
S.M. Vernon
Affiliation:
Spire Corp., Patriots Park, Bedford, MA 01730
Get access

Abstract

Deep level transient spectroscopy (DLTS), current-voltage- temperature (I-V-T), capacitance-voltage-temperature (C-V-T), C-T and photoreflectance spectroscopy (PRS) were used to compare the electrical properties of GaAs p-n junctions epitaxially grown by MOCVD on GaAs and Si substrates. EL2 was detected for both GaAs/GaAs and GaAs/Si structures. For GaAs/Si, a continuous distribution of trap levels was also observed which could be ascribed to misfit defects. I-V-T data revealed the saturation current of GaAs/Si diodes to be four orders in amplitude higher than for GaAs/GaAs ones. Different temperature dependences were found in saturation current density, barrier height and capacitance between the two structures. A multistep tunneling model is utilized in explaining the results for GaAs/Si. C-T measurements indicated the free carriers not to be frozen-out for GaAs/Si at the freeze-out temperature of GaAs/GaAs. A defect- induced bandgap tailing effect might be responsible for this effect, verified by PRS tests.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Morkoc, H., Unlu, H., Zabel, H. and Otsuka, N., Solid State Tech.Vol. 71, March 1988.Google Scholar
2Vernon, S.M., Haven, V.E., Tobin, S.P. and Wolfson, R.G., J. Crystal Growth Vol.77, 530 (1986).Google Scholar
3Shay, J.L., Phys. Rev. B, Vol.2, 803 (1970).Google Scholar
4Lang, D.V., Appl. Phys. Lett. Vol.45, 3023 (1974).Google Scholar
5Matin, G.M., Mitonneau, A., and Mircea, A., Electron. Lett., Vol.13, 191 (1977).Google Scholar
6Taniguchi, M. and Ikoma, T., Appl. Phys. Lett. Vol.45, 69 (1984).Google Scholar
7von Bardeleben, H.J. and Stievenard, D., Mat. Res. Soc. Symp. Proc. Vol. 104, 351 (1988).Google Scholar
8Ikeda, E., Hasegawa, H., Ohtsuka, S. and Ohno, H., Jpn. J. Appl. Phys. Vol. 27, 180, 1988.Google Scholar
9Soga, T., Sakai, S., Umeno, M.,and Hattori, S., Jpn. J. Appl. Phys. Part1, Vol.25, 1510 (1986).Google Scholar
10Fahrebruch, A.L. and Bube, R.H., “Fundamentals of Solar Cells”, Academic Press Inc. New York, 1983.Google Scholar
11Riben, A.G. and Feucht, D.L., Solid-State Electron., Vol.9, 1055 (1966).Google Scholar
12Riben, A.G. and Feucht, D.L., Int. J. Electron. Vol. 20, 583 (1986).Google Scholar
13Chang, N.S. and Sites, J.R., J. Appl. Phys. Vol.49 4833 (1978).Google Scholar
14Glembocki, O.J., Shanabrook, B.V., Bottka, N., Beard, W.T., and Comas, J., Appl.Phys.Lett., Vol.46, 970 (1985).Google Scholar