Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-22T13:25:36.969Z Has data issue: false hasContentIssue false

Electrical Properties of Ion Implanted Poly (P-Phenylene Sulfide)

Published online by Cambridge University Press:  15 February 2011

J.S. Abel
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
H. Mazurek
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
D.R. Day
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
E.W. Maby
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
S.D. Senturia
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
G. Dresselhaus
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
M.S. Dresselhaus
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Get access

Abstract

Ion-implantation can increase the electrical conductivity of the polymer poly (p-phenylene sulfide) (PPS) by ~ 14 orders of magnitude. This conductivity increase, which is stable under ambient conditions, is studied as a function of temperature, ion energy, fluence and species, using a novel technique, based on microelectronics processing, capable of accurately measuring conductivities as low as 10−10 (Ω-cm)−1. Mechanisms for the enhanced conductivity of PPS are discussed in relation to our measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Department of Electrical Engineering and Computer Science

*

Center for Materials Science and Engineering.

§

Now at ARCO Chemical Co.3801 Westchester Pike Newtown Sq.PA 19073

Francis Bitter National Magnet Laboratory, supported by NSF.

References

REFERENCES

1.Weber, D.C., Brant, P., Carosella, C. and Banks, L.G., JCS Chem. Commun. 522, (1981).Google Scholar
2.Allen, W.N., Brant, P., Carosella, C.A., DeCorpo, J.J., Ewing, C.T., Saalfeld, F.E and Weber, D.C., Synthetic Metals 1, 151 (1980).Google Scholar
3.Lindhard, J., Scharff, M. and Schiott, H.E., Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd. 33, 14 (1963).Google Scholar
4.Park, Y.W., Druy, M.A., Chiang, C.K., MacDiarmid, A.G., Heeger, A.J., Shirakawa, H. and Ikeda, S., J. Polym. Sci., Polym. Lett. Ed. 17, 195 (1979).Google Scholar
5.Ivory, D.M., Miller, G.G., Sowa, J.M., Shacklette, L.W., Chance, R.R. and Baughman, R.H., J. Chem. Phys. 71, 1506 (1979).Google Scholar
6.Kanazawa, K.K., Diaz, A.F., Geiss, R.H., Gill, W.D., Kwak, J.F., Logan, J.A., Rabolt, J.F. and Street, G.B., JCS Chem. Commun., 854 (1979).Google Scholar
7.Chance, R.R., Shacklette, L.W., Miller, G.G., Ivory, D.M., Sowa, J.M., Eisenbaumer, R.L. and Baughman, R.H., JCS Chem. Commun., 348 (1980).Google Scholar
8.Valdes, L.B., Proc. IRE 42, 420 (1954).Google Scholar
9.Hamilton, E.M., Proc. Roy. Soc. 26, 1043 (1972).Google Scholar
10.Lampert, M.A., Proc. IRE 50, 1781 (1962).Google Scholar
11.Kryszewski, M. and Szmanski, A., Macromolecular Review 4, 245 (1970).Google Scholar