Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-18T23:08:17.310Z Has data issue: false hasContentIssue false

Electrical Contact Resistance of Electroless Nickel to Nanocrystalline Silicon and the Fabrication of a Thermoelectric Generator

Published online by Cambridge University Press:  17 July 2013

V. Kessler
Affiliation:
Faculty of Engineering and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
M. Dehnen
Affiliation:
Faculty of Engineering and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
R. Chavez
Affiliation:
Faculty of Engineering and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
M. Engenhorst
Affiliation:
Faculty of Engineering and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
J. Stoetzel
Affiliation:
Faculty of Engineering and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
N. Petermann
Affiliation:
Faculty of Engineering and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
K. Hesse
Affiliation:
GSI - Gesellschaft für Schweißtechnik International mbH, Niederlassung SLV Duisburg, 47057 Duisburg, Germany
T. Huelser
Affiliation:
Institute of Energy and Environmental Technology e.V. (IUTA), 47229 Duisburg, Germany
M. Spree
Affiliation:
Institute of Energy and Environmental Technology e.V. (IUTA), 47229 Duisburg, Germany
G. Schierning
Affiliation:
Faculty of Engineering and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
R. Schmechel
Affiliation:
Faculty of Engineering and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
Get access

Abstract

We present the fabrication of a high-temperature stable thermoelectric generator based on nanocrystalline silicon. Highly doped silicon nanoparticles were sintered by a current activated sintering technique to get nanocrystalline bulk silicon. The metalization of silicon was realized by (electro-)chemical plating and the specific electrical contact resistance ρc of the semiconductor-metal interface was measured by a transfer length method. Values as low as $\rho _C < 1 \cdot 10^{ - 6} \,\Omega cm^2 $ were measured. The metalized nanocrystalline silicon legs were sintered to metalized ceramic substrates using a silver-based sinter paste. The device figure of merit of the thermoelectric generator was determined by a Harman measurement with a maximum ZT of approximately 0.13 at 600 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Minnich, A. J., Dresselhaus, M. S., Ren, Z. F. and Chen, G., Energy & Environmental Science 2, 466 (2009).CrossRefGoogle Scholar
Snyder, G. J. and Toberer, E.S., Nature Materials 7, 105 (2008).CrossRefGoogle Scholar
Schierning, G., Theissmann, R., Stein, N., Petermann, N., Becker, A., Engenhorst, M., Kessler, V., Geller, M., Beckel, A., Wiggers, H. and Schmechel, R., J. Appl. Phys. 110, 113515 (2011).CrossRefGoogle Scholar
Bux, S. K., Blair, R. G., Gogna, P. K., Lee, H., Chen, G., Dresselhaus, M. S., Kaner, R. B., and Fleurial, J.-P., Adv. Funct. Mater. 19, 2445 (2009).CrossRefGoogle Scholar
Harman, T. C., J. Appl. Phys. 29, 1373 (1958).CrossRefGoogle Scholar
Hülser, T., Schnurre, S. M., Wiggers, H. and Schulz, C., KONA Powder and Particle Journal 29, 191 (2011).CrossRefGoogle Scholar
Kessler, V., Gautam, D., Hülser, T., Spree, M., Theissmann, R., Winterer, M., Wiggers, H., Schierning, G. and Schmechel, R., Adv. Eng. Mater., DOI: 10.1002/adem.201200233 CrossRefGoogle Scholar
Sullivan, M. V. and Eigler, J. H., J. Electrochem. Soc. 104, 226 (1957).CrossRefGoogle Scholar
Sze, S. M. and Ng, K. K., Physics of semiconductor devices, 3rd ed. (Wiley-Interscience, Hoboken, 2007) p. 179180 Google Scholar
Feldstein, N., RCA Review, 317 (1970)Google Scholar
Shockley, W. in Goetzberger, A. and Scarlett, R. M, Research and Investigation of Inverse Epitaxial UHF Power Transistors, Rep. No. AFAL-TDR-64–207, Air Force Avionics Lab., Wright-Patterson Air Force Base, OH, 1964.CrossRefGoogle Scholar
Schroder, D. K., Semiconductor Material and Device Characterization, 2nd ed. (Wiley-Interscience, New York, 1998) pp. 133199 Google Scholar