Hostname: page-component-5c6d5d7d68-wpx84 Total loading time: 0 Render date: 2024-08-14T18:39:23.517Z Has data issue: false hasContentIssue false

Electrical Characterization of Highly Strained Ultrathin InAs/GaAs Quantum Wells

Published online by Cambridge University Press:  21 February 2011

F. Yu
Affiliation:
Department of Electrical Engineering and Center for Solid State Electronics Research, Arizona State University, Tempe, Arizona 85287-6206
R. Droopad
Affiliation:
Department of Electrical Engineering and Center for Solid State Electronics Research, Arizona State University, Tempe, Arizona 85287-6206
G.N. Maracas
Affiliation:
Department of Electrical Engineering and Center for Solid State Electronics Research, Arizona State University, Tempe, Arizona 85287-6206
J. Liu
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, Arizona 85287
R. Rajesh
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, Arizona 85287
R.W. Carpenter
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, Arizona 85287
Get access

Abstract

Recent studies have shown that highly strained InAs/GaAs quantum wells of high crystalline quality can be grown by conventional solid source molecular beam epitaxy. These wells have been optically characterized by photoluminescence and structurally characterized by electron microscopy. We present the first report of the electrical investigation of InAs/GaAs quantum well confined electronic states using capacitance transient spectroscopy and steady state capacitance-voltage profiling techniques. These measurements are combined with high resolution electron microscopy and high-angle annular dark-field (HAADF) imaging to characterize the highly strained ultrathin quantum wells and heterointerfaces. HAADF, in conjunction with nanometer resolution X-ray analysis, gives the compositional distribution of the InAs monolayers. Correlation with photoluminescence is also performed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Jaffe, M. and Singh, J., IEEE Trans. Electron Devices ED–35, 2540 (1987).Google Scholar
2 Onda, K., Toyoshima, H., Mizuki, E., Samoto, N., Makino, Y., Kuzuhara, M., and Itoh, T., Proc. of the IEEE International Electron Device Meeting, 503 (1990).Google Scholar
3 Horikoshi, Y., Kawashina, M., Jpn. J. Appl. Phys., Pt. 1, 28, 200 ( 1989).Google Scholar
4 Sato, M., Horikoshi, Y., J. Appl. Phys. 66, 851 (1989).Google Scholar
5 Brandt, O., Ploog, K., Tapfer, L., Hohenstein, M., Bierwolf, R., and Phillipp, F., Phys. Rev. B 45, 8443 (1992); Appl. Phys. Lett. 61, 2814 (1992).Google Scholar
6 Martin, P.A., Meehan, K., Gavrilovic, P., Hess, K., Holonyak, N. Jr., and Coleman, J.J., J. Appl. Phys. 54, 4689 (1983).Google Scholar
7 Debbar, N. and Bhattacharya, P., J. Appl. Phys. 62, 3845 (1987).Google Scholar
8 Ploog, K.H., Brandt, O., Semicond. Sci. Technol. 8, S229 (1993).Google Scholar
9 Liu, J., Cowley, J.M., Ultramicroscopy, 37,50 (1991).Google Scholar
10 Rimmer, J.S., Hawkins, I.D., Hamilton, B. and Peaker, A.R., Mat. Res. Soc. Symp. Proc. 145, 475 (1989).Google Scholar
11 Shubert, E.F., Kopf, R.F., Kuo, J.M., Luftman, H.S., and Garbinski, P.A., Appl. Phys. Lett. 57, 497 (1989).Google Scholar
12 Shiraishi, K., Yamaguchi, E., Phys. Rev. B 42, 3064 (1990).Google Scholar