Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-17T12:06:09.710Z Has data issue: false hasContentIssue false

Electrical and Structural Study on Ion Implanted Poly(Dimethylsilylene-Co-Methylphenylsilylene)

Published online by Cambridge University Press:  26 February 2011

R. A. Basheer
Affiliation:
General Motors Research Laboratories, Warren, MI 48090-9055
A. H. Hamdi
Affiliation:
General Motors Research Laboratories, Warren, MI 48090-9055
R. Y. Kwor
Affiliation:
Department of Electrical and Computer Engineering, University of Notre Dame, Notre Dame, IN 46556
Get access

Abstract

The effects of ion implantation on the electrical and structural properties of poly(dimethylsilylene-co-methylphenylsilylene), DMIOPS, thin films have been investigated. Ionic species of krypton, arsenic, fluorine, chlorine, and sulfur were implfgted at energies ranging from 35 to 200 key and with doses of up to 1 × 1016 ion/cm2. The conductivity of the polymer increased upon implantation reaching a maximum value of 9.6 × 10−6 (Ω cm)−1 for the case of arsenic ion at a dose of 1 × 1016 ion/cm2 and energy of 100 keV. The results showed that ion implantation induced conduction in DUMPS was primarily due to structural modifications of the material brought about by the energetic ions. Infrared analysis and Auger electron spectroscopy showed evidence for the formation of a silicon carbide-like structure upon implantation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dresselhaus, M. S., Wasserman, B., and Wenk, G. E., Mat. Res. Soc. Symp. Proc. 27, 413 (1984).Google Scholar
2. Mazurek, H., Day, D. R., Maby, W. W., Abel, J. S., Senturia, S. D., Dresselhaus, M. S., and Dresselhaus, G., J. Polym. Sci. Poly. Phys., ed. 21, 537 (1983).CrossRefGoogle Scholar
3. T Venkatesan, Wolf, T., Allara, D., Wilkens, B. J. and Tylor, G. N., Mat. Res. Soc. Symp. Proc. 27, 439 (1984).Google Scholar
4. Kaplan, M. L., Forrest, S. R., Schmidt, P. H., and Venkatesan, T., J. Appl. Phys. 55(3), 732 (1983).Google Scholar
5. Bartko, J., Hall, B. O., and Schoch, K. F., J. App. Phys. 59, 1111 (1986).Google Scholar
6. West, R., David, L. D., Djurovich, P. I., Stearley, K. L., Srinivasan, K. S. V., and Yu, Hyuk, J. Am. Chem. Soc. 103, 7352 (1981).CrossRefGoogle Scholar
7. Ueberreiter, K. and Kanig, G. J., J. Chem. Phys. 18, 399(1950).Google Scholar
8. Haas, T. W., Grant, J. T., and Dooley, G. J. III, J. Appl. Phys. 43(4), 1853 (1972).Google Scholar