Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-11T07:02:55.159Z Has data issue: false hasContentIssue false

Electrical and Structural Properties of Ti Contacts on an Atomically Clean N-Type GaAs Surface

Published online by Cambridge University Press:  25 February 2011

X. W. Lin
Affiliation:
Materials Science Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720
Z. Liliental-Weber
Affiliation:
Materials Science Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720
W. Swider
Affiliation:
Materials Science Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720
T. McCants
Affiliation:
Stanford Electronics Laboratories, Stanford University, Stanford, CA 94305
N. Newman
Affiliation:
Materials Science Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720 Stanford Electronics Laboratories, Stanford University, Stanford, CA 94305
W. E. Spicer
Affiliation:
Stanford Electronics Laboratories, Stanford University, Stanford, CA 94305
J. Washburn
Affiliation:
Materials Science Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720
E. R. Weber
Affiliation:
Materials Science Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720
Get access

Abstract

Using current-voltage measurements and high-resolution electron microscopy (HREM), we have studied the electrical and structural properties of Ti contacts on an atomically clean n-type GaAs (110) surface. The Ti/n-GaAs diodes are formed at room temperature in ultrahigh vacuum and in situ isochronally (10 min) annealed at temperatures ranging from 200 to 450°C. We find that the Schottky barrier height of the diodes increases by ≈0.10 eV upon annealing at 200°C and remains basically stable for higher-temperature anneals. HREM investigation reveals that Ti reacts with GaAs in its as-deposited state to form an amorphous interlayer ≈1.5 nm thick. After anneals to 450°C, extensive reactions occur at the interface, resulting in the formation of a layered structure Ti/Ga3Ti2/TiAs/GaAs, with TiAs protruding into the GaAs substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

1. Waldrop, J.R. and Grant, R.W., Appl. Phys. Lett. 34, 630 (1979);Google Scholar
Ruckman, M.W., del Giudice, M., Joyce, J.J., and Weaver, J.H., Phys. Rev. B 33, 2191 (1986);Google Scholar
Ludeke, R. and Landgren, G., Phys. Rev. B 33, 5526 (1986);Google Scholar
Xu, F., Hill, D.M., Lin, Z., Anderson, S.G., Shapira, Y., and Weaver, J.H., Phys. Rev. B 37, 10295 (1988).Google Scholar
2. McCants, C.E., Kendelewicz, T., Mahowald, P.H., Bertness, K.A., Williams, M.D., Newman, N., Lindau, I., and Spicer, W.E., J. Vac. Sci. Technol. A 6, 1466 (1988).Google Scholar
3. Sinha, A.K., Smith, T.E., Read, M.H., and Poate, J.M., Solid-State Electon. 19, 489 (1976).Google Scholar
4. Wada, O., Yanagisawa, S., and Takanashi, H., Appl. Phys. Lett. 29, 263 (1976).Google Scholar
5. Kniffin, M. and Helms, C.R., J. Vac. Sci. Technol. A 5, 1511 (1987).Google Scholar
6. Kim, K. B., Kniffin, M., Sinclair, R., and Helms, C.R., J. Vac. Sci. Technol. A 6, 1473 (1988).Google Scholar
7. Kim, K. B. and Sinclair, R., Mat. Res. Soc. Symp. Proc. 148, 21 (1989).Google Scholar
8. Liliental-Weber, Z., Weber, E.R., Washburn, J., and Weaver, J.H., Appl. Phys. Lett. 56, 2507 (1990).Google Scholar
9. Liliental-Weber, Z., Washburn, J., Newman, N., Spicer, W.E., and Weber, E.R., Appl. Phys. Lett. 49, 1514 (1986);Google Scholar
Newman, N., Liliental-Weber, Z., Weber, E.R., Washburn, J., and Spicer, W.E., Appl. Phys. Lett. 53, 145 (1988) and references therein.Google Scholar
10. Newman, N., van Schilfgaarde, M., Kendelwicz, T., Williams, M.D., and Spicer, W.E., Phys. Rev.B 33, 1146 (1986).Google Scholar
11. Lur, W. and Chen, L.J., Appl. Phys. Lett. 54, 1217 (1989);Google Scholar
Liauh, H.R., Chen, M.C., Chen, J.F., and Chen, L.J., Appl. Phys. Lett. 61, 2167 (1992) and references therein.Google Scholar
12. Cheng, J.Y. and Chen, L.J., Appl. Phys. Lett. 56, 457 (1990).Google Scholar
13. Shiau, F.Y. and Chang, Y.A., Appl. Phys. Lett. 55, 1510 (1989);Google Scholar
Shiau, F.Y., Chen, S.L., Loomans, M., and Chang, Y.A., Mater, J.. Res. 6, 1532 (1991) and references therein.Google Scholar
14. Ko, D.H. and Sinclair, R., J. Appl. Phys. 72, 2036 (1992).Google Scholar
15. Sands, T., Keramidas, V.G., Yu, K.M., Washburn, J., and Krishnan, K., J. Appl. Phys. 62, 2070 (1987).Google Scholar