Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-24T13:59:57.461Z Has data issue: false hasContentIssue false

Electrical and Optical Properties of Si and Si1−xGex, Alloy Grown by the Ultra-High Vacuum Vapour Phase Epitaxy Method

Published online by Cambridge University Press:  22 February 2011

W. Y. Leong
Affiliation:
Defence Research Agency, Electronics Division (RSRE), St. Andrews Road, Great Malvern, Worcs WR14 3PS, U.K.
D. J. Robbing
Affiliation:
Defence Research Agency, Electronics Division (RSRE), St. Andrews Road, Great Malvern, Worcs WR14 3PS, U.K.
J. L. Glasper
Affiliation:
Defence Research Agency, Electronics Division (RSRE), St. Andrews Road, Great Malvern, Worcs WR14 3PS, U.K.
L. T. Canham
Affiliation:
Defence Research Agency, Electronics Division (RSRE), St. Andrews Road, Great Malvern, Worcs WR14 3PS, U.K.
R. Carline
Affiliation:
Defence Research Agency, Electronics Division (RSRE), St. Andrews Road, Great Malvern, Worcs WR14 3PS, U.K.
P. Calcott
Affiliation:
Defence Research Agency, Electronics Division (RSRE), St. Andrews Road, Great Malvern, Worcs WR14 3PS, U.K.
Get access

Abstract

Epitaxial growth and p-type doping in Si and Si1−xGex alloy by the ultra-high vacuum vapour phase epitaxy (UHV-VPE) method using SiH4/GeH4/B2H/H2 mixture is reported. Growth temperatures as low as 610°C were studied for Ge contents between x=0 to 0.25. Secondary Ion Mass Spectroscopy (SIMS) data of boron dopant profiles in si and Si1−xGex structures are presented. Strong luminescence attributed to the strained Si1−xGex alloy is obtained. The bandgap in the alloy layer obtained from our luminescence data is compared with published data. Unambiguous electroluminescence from a Si1−xGex multiple quantum well p-n structure grown by UHV-VPE, supported by the photoluminescence and photoconductivity measurement, is reported for the first time.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Meyerson, B. S., Appl. Phys. Lett., 48, 797 (1986).Google Scholar
2. Comfort, J. H. and Reif, R., Appl. Phys. Lett., 51, 1536 (1987).Google Scholar
3. Gibbons, J. F., Gronet, C. M. and Williams, K. E., Appl. Phys. Lett., 47, 721 (1985).Google Scholar
4. Robbins, D. J. and Young, I. M., Appl. Phys. Lett., 50, 1575 (1987).Google Scholar
5. Pickering, C., Robbins, D. J., Young, I. M., Glasper, J. L., Johnson, M. and Jones, R., Mat. Res. Soc. Proc, 94, 173 (1987).CrossRefGoogle Scholar
6. Robbins, D. J., Pidduck, A. J., Glasper, J. L., Young, I. M. and Pickering, C., Thin Solid Films, 183, 299 (1989).CrossRefGoogle Scholar
7. Robbins, D. J., Glasper, J. L., Cullis, A. G. and Leong, W. Y., J. Appl. Phys., 69, 3729 (1991).Google Scholar
8. Robbins, D. J., Canham, L. T., Barnett, S. and Cullis, A. G., (unpublished).Google Scholar
9. Terashima, K., Tajima, M. and Tatsumi, T., Appl. Phys. Lett., 57, 1925 (1990).Google Scholar
10. Sturm, J. C., Manoharan, H., Lenchyshyn, L. C., Thewalt, M. L. H., Rowell, N. L., Noël, J. P. and Houghton, D.C., Phys. Rev. Lett., 40, 1362 (1991).Google Scholar
11. Weber, J. and Alonso, M. I., Phys. Rev. B, 40, 5683 (1989).Google Scholar
12. Lang, D. V., People, R., Bean, J. C. and Sergent, A. M., Appl. Phys. Lett., 47, 1333 (1985).Google Scholar
13. Rowell, N. L., Noël, J. P., Houghton, D. C. and Buchanan, M., Appl. phys. Lett., 58, 957 (1991).CrossRefGoogle Scholar