Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T22:03:44.240Z Has data issue: false hasContentIssue false

Electrical and Optical Properties of n-type and p-type ZnO

Published online by Cambridge University Press:  26 February 2011

D. C. Look
Affiliation:
Semiconductor Research Center, Wright State University, Dayton, OH 45435 Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433
B. Claflin
Affiliation:
Semiconductor Research Center, Wright State University, Dayton, OH 45435 Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433
Get access

Abstract

In recent years, ZnO has been proposed for new electronic and optoelectronic devices, such as transparent transistors and UV light-emitting diodes (LEDs). The LED application will require both n-type and p-type ZnO, but the latter is difficult to produce, and progress in this area will require a detailed knowledge of the various impurities and defects that affect the electrical and optical properties. The dominant donors in as-grown ZnO are usually thought to be interstitial H and substitutional AlZn, with activation energies of about 40 and 65 meV, respectively. However, interstitial Zn and its associated complexes may also contribute free electrons. The dominant acceptor, at least in vapor-phase-grown material, is the Zn vacancy; however, substitutional NO is also present, although sometimes passivated by H. To produce p-type ZnO, it is necessary to dope with acceptor-type impurities, and some success has been achieved with N, P, As, and Sb. However, only N has been proven to have simple substitutional character (NO), and more complicated acceptor structures, such as AsZn-2VZn, have been proposed for some of the other group V elements. Both homostructural and heterostructural UV LEDs have been fabricated, although not of high luminescent power so far. The main objective of this paper is to review the Hall-effect and photoluminescence results on n-type and p-type ZnO.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Whitaker, T, Compound Semiconductor 10, 20 (2004).Google Scholar
2. Look, D.C., Claflin, B., Alivov, Ya. I., and Park, S.J., phys. stat. sol. (a) 201, 2203 (2004).Google Scholar
3. Kohan, A.F., Ceder, G., Morgan, D., and Van de Walle, C.G., Phys. Rev. B 61, 15019 (2000).Google Scholar
4. Van de Walle, C.G., Phys. Rev. Lett. 85, 1012 (2000).Google Scholar
5. Shibata, H., Watanabe, M., Sakai, M., Oka, K., Fons, P., Iwata, K., Yamada, A., Matsubara, K., Sakurai, K., Tampo, H., Nakahara, K., and Niki, S., phys. stat. sol. (c) 1, 872 (2004).Google Scholar
6. Hofmann, D.M., Hofstaetter, A., Leiter, F., Zhou, H., Henecker, F., Meyer, B.K., Orlinskii, S.B., Schmidt, J., Baranov, P.G., Phys. Rev. Lett. 88, 5504 (2002).Google Scholar
7. Strzhemechny, Y.M., Nemergut, J., Smith, P.E., Bae, J., Look, D.C., and Brillson, L.J., J. Appl. Phys. 94, 4256 (2003).Google Scholar
8. Seager, C.H. and Myers, S.M., J. Appl. Phys. 94, 2888 (2003).Google Scholar
9. Look, D.C., Hemsky, J.W., and Sizelove, J.R., Phys. Rev. Lett. 82, 2552 (1999).Google Scholar
10. Park, C.H., Zhang, S.B., and Wei, S.H., Phys. Rev. B 66, 073202 (2002).Google Scholar
11. Look, D.C., Reynolds, D.C., Litton, C.W., Jones, R.L., Eason, D.B., and Cantwell, G., Appl. Phys. Lett. 81, 1830 (2002).Google Scholar
12. Limpijumnong, S., Zhang, S.B., Wei, S.H., and Park, C.H., Phys. Rev. Lett. 92, 155504 (2004).Google Scholar
13. Look, D.C., Electrical Characterization of GaAs Materials and Devices (Wiley, New York, 1989), Ch.1.Google Scholar
14. Look, D.C., Reynolds, D.C., Sizelove, J.R., Jones, R.L., Litton, C.W., Cantwell, G., and Harsch, W.C., Solid State Commun. 105, 399 (1998).Google Scholar
15. ZN Technology, Inc., 910 Columbia St., Brea, CA 92821.Google Scholar
16. Reynolds, D.C., Look, D.C., Jogai, B., Litton, C.W., Collins, T.C., Harsch, W.C., and Cantwell, G., Phys. Rev. B 57, 12151 (1998).Google Scholar
17. Meyer, B.K., Alves, H., Hofmann, D.M., Kriegsies, W., Forster, D., Bertram, F., Christen, J., Hoffmann, A., Straβburg, M., Dworzak, M., Haboeck, U., and Rodina, A.V., phys. stat. sol. (b) 241, 231 (2004).Google Scholar
18. Look, D.C., Sizelove, J.R., Jasinski, J., Liliental-Weber, Z., Saarinen, K., Park, S.S., and Han, J.H., Mat. Res. Soc. Symp. Proc. 743, 575 (2003).Google Scholar
19. Minegishi, K., Koiwai, Y., and Kikuchi, K., Jpn. J. Appl. Phys. 36 (1997) L1453.Google Scholar
20. Look, D.C., Renlund, G.M., Burgener, R.H. II, and Sizelove, J.R., Appl. Phys. Lett. 85, xxxx (2004). (in press)Google Scholar
21. Kim, K-K., Kim, H-S., Hwang, D-K., Lim, J-H., and Park, S-J., Appl. Phys. Lett. 83, 63 (2003).Google Scholar
22. Gutowski, J., Presser, N., and Broser, I., Phys. Rev. B 38, 9746 (1988).Google Scholar
23. Alivov, Ya.I., Kalinina, E.V., Cherenkov, A.E., Look, D.C., Ataev, B.M., Omaev, A.K., Chukichev, M.V., and Bagnall, D.M., Appl. Phys. Lett. 83, 4719 (2003).Google Scholar
24. Osinsky, A., Dong, J.W., Kauser, M.Z., Hertog, B., Dabiran, A.M., Chow, P.P., Pearton, S.J., Lopatiuk, O., and Chernyak, L., Appl. Phys. Lett. 85, 4272 (2004).Google Scholar