Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-16T22:20:36.766Z Has data issue: false hasContentIssue false

Electrical and Optical Properties of Indium Doped Zinc Oxide Films Prepared by Atmospheric Pressure Chemical Vapor Deposition

Published online by Cambridge University Press:  28 February 2011

Jianhua Hu
Affiliation:
Department of Chemistry, Harvard University, Cambridge, MA 02138
Roy G. Gordon
Affiliation:
Department of Chemistry, Harvard University, Cambridge, MA 02138
Get access

Abstract

Indium doped zinc oxide films have been deposited from diethyl zinc, ethanol and trimethyl indium in the temperature range between 225°C and 450°C in a laminar flow atmospheric chemical vapor deposition reactor. Both doped and undoped films were crystalline. The doped films have electron density up to 9×1020 cm-3, conductivity up to 850 Ω-1cm-1, and mobility up to 8 cm2/Vs. The indium doping increases the average visible absorption from less than 1% to above 20%. The transparency and conductivity of indium doped zinc oxide films are lower than those of fluorine doped films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hu, J. and Gordon, R. G., J. Appl. Phys. 21, 880 (1992).Google Scholar
2. Hu, J. and Gordon, R. G., Solar Cells 30, 437 (1991).Google Scholar
3. Aktaruzzaman, A. F., Sharma, G. L., and Malhotra, L. K., Thin Solid Films 198, 277 (1991).Google Scholar
4. Minami, T., Sato, H., Nanto, H., and Takata, S., Thin Solid Films 176, 277 (1989).Google Scholar
5. Jin, Z.-C., Hamberg, I., and Granqvist, C. G., J. Appl. Phys. 64, 5117 (1988).Google Scholar
6. Oda, S., Tokunaga, H., Kitajima, N., Hanna, J., Shimizu, I., and Kokado, H., Jpn. J. Appl. Phys. 24, 1607 (1985).Google Scholar
7. Hamberg, I. and Granqvist, C. G., J. Appl. Phys. 60, R123 (1986).Google Scholar
8. Gordon, R. G., Proscia, J. W., Ellis, F. B. Jr., and Delahoy, A. E., Solar Energy Mater. 18, 263 (1989).Google Scholar
9. Banerjee, R., Ray, S., Basu, N., Batabyal, A. K., and Barua, A. K., J. Appl. Phys. 62, 912 (1987).Google Scholar
10. Hu, J. and Gordon, R. G., J. Electrochem. Soc. 139, 2014 (1992).Google Scholar
11. Choi, B. H., Im, H. B., Song, J. S., Yoon, K. H., Thin Solid Films 194, 712 (1990).Google Scholar
12. Qiu, S. N., Qiu, C. X., and Shih, I., Solar Energy Mater. 15, 261 (1987).Google Scholar
13. Major, S., Banerjee, A., and Chopra, K. L., Thin Solid Films 122, 31 (1984).Google Scholar
14. Minami, T., Nanto, H., and Takata, S., Jpn. J. Appl. Phys. 22, L280 (1984).Google Scholar
15. Kuroyanagi, A., J. Appl. Phys. 66, 5492 (1989).Google Scholar
16. Okamura, T., Seki, Y., Nagakari, S., and Okushi, H., Jpn. J. Appl. Phys. 31, L762 (1992).Google Scholar
17. Hu, J. and Gordon, R. G., Mater. Res. Soc. Symp. Proc. 242, 743 (1992).Google Scholar