Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-10T17:48:34.387Z Has data issue: false hasContentIssue false

Electrical and Optical Modelling of Thin-Film Silicon Solar Cells

Published online by Cambridge University Press:  01 February 2011

Miro Zeman
Affiliation:
m.zeman@tudelft.nl, Delft University of Technology, ECTM, Feldmannweg 17, Delft, N/A, Netherlands, +31 15 2782409
Janez Krc
Affiliation:
m.zeman@tudelft.nl, Delft University of Technology, ECTM, Feldmannweg 17, Delft, N/A, Netherlands, +31 15 2782409
Get access

Abstract

Today amorphous and microcrystalline silicon based solar cells use surface-textured substrates for enhancing the light absorption and buffer and graded layers in order to improve the overall performance of the cells. Tandem and triple-junction configurations are utilized to assure better use of the solar spectrum and, thus, achieve higher conversion efficiencies of the devices. Resulting structures of the solar cells are complex and computer modeling has become an essential tool for a detailed understanding and further optimization of their optical and electrical behavior.

The performance limits of tandem and triple-junction silicon based solar cells are studied by simulations using the optical simulator SunShine developed at Ljubljana University and the opto-electrical simulator ASA developed at Delft University of Technology. First, both simulators were calibrated with realistic optical and electrical parameters. Then, they were used to study the required scattering properties, absorption in non-active layers, antireflective coatings, the crucial role of the wavelength selective intermediate reflector, and a careful current matching in order to indicate the way for achieving a high photocurrent, more than 15 mA/cm2 for a tandem a-Si:H/ìc-Si:H and 11 mA/cm2 for a triple-junction a-Si:H/a-SiGe:H/ìc-Si:H solar cells. By optimizing electrical properties of the layers and interfaces, for example using a p-doped a-SiC layer with a larger band gap (EG > 2 eV) and introducing buffer layers at p/i interfaces, the extraction of the charge carriers, the open-circuit voltage and the fill factor of the solar cells are improved. The potential for achieving the conversion efficiency over 15% for the a-Si:H/ìc-Si:H and 17 % for the triple-junction a-Si:H/a-SiGe:H/ìc-Si:H solar cells is demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

4 Burgelman, M., Verschraegen, J., Degrave, S. and Nollet, P., Prog. Photovolt: Res. Appl. 12, 143153 (2004).Google Scholar
5 Arch, J. K., Rubinelli, F. A., Hou, J.-Y., and Fonash, S. J., J. Appl. Phys. 69, 7674 (1991).Google Scholar
6 Topic, M., Smole, F., and Furlan, J., J. Appl. Phys., 79 (1996) 8537.Google Scholar
7 Zeman, M., Willemen, J.A., Vosteen, L.L.A., Tao, G. and Metselaar, J.W., Solar Energy Materials and Solar Cells 46, 81 (1997).Google Scholar
8 Burgelman, M., Nollet, P., Degrave, S., Thin Solid Films 361 – 362, 527 (2000).Google Scholar
9 Froitzheim, A., Stangl, R., Elstner, L., Kriegel, M., Fuhs, W., Proc. 3rd WCPEC, Osaka, Japan, 2003, 1P-D3-34.Google Scholar
10 Sawada, T., Tarui, H., Terada, N., Tanaka, M., Takahama, T., Tsuda, S. and Nakano, S., Proc. 23rd IEEE PVSC, Louisville, KY, 1993, p. 803.Google Scholar
11 Fantoni, A., Vieira, M., Cruz, J., Schwarz, R. and Martins, R., J. Phys. D: Appl. Phys. 29, 3154 (1996).Google Scholar
12 Zimmer, J., Stiebig, H., and Wagner, H., Mat. Res. Soc. Proc. 507, Warrendale, PA, 1998, p. 377 Google Scholar
13 Furlan, J., Amon, S., Popovič, P., Smole, F., Proc. 1st WCPEC-1, Hawaii, USA, (1994) p. 658.Google Scholar
14 Haase, Ch. and Stiebig, H., Proc. 21st EU PVSEC, Dresden, Germany, 2006, p. 1712.Google Scholar
15 Brecl, K., Fischer, D., Smole, F., Topic, M., Proc. 21th EU PVSEC, Dresden, Germany, 2006, p. 1662 Google Scholar
16 Krc, J., Smole, F., Topic, M., Prog. in Photovolt: Res. Appl. 11, 15 (2003).Google Scholar
17 Schropp, R.I.E. and Zeman, M., Amorphous and Microcrystalline Solar Cells: Modeling, Materials, and Device Technology, (Kluwer Academic Publishers, 1998).Google Scholar
18 Leblanc, F., Perrin, J., Schmitt, J., J. Appl. Phys. 75, 1074 (1994).Google Scholar
19ASA simulator, User’s manual v5.0, Delft University of Technology, 2005.Google Scholar
20 Springer, J., Poruba, A., and Vanecek, M., J. Appl. Phys. 96, 5329 (2004).Google Scholar
21 Mueller, J., Rech, B., Springer, J., and Vanecek, M., Solar Energy Materials and Solar Cells 77, 917 (2004).Google Scholar
22 Zeman, M., Swaaij, R.A.C.M.M. van, Metselaar, J.W., and Schropp, R.E.I., J. Appl. Phys. 88, 6436 (2000).Google Scholar
23 Krc, J., Zeman, M., Kluth, O., Smole, F., Topic, M., Thin Solid Films 426, 296 (2003).Google Scholar
24 Fischer, D. et al., Proc. 25th IEEE PVSC, Washington, DC, 1996, p. 1053.Google Scholar
25 Yamamoto, K. et al., Proc. 15th PVSEC, Shanghai, China, 2005, p. 529 Google Scholar
26 Guha, S. et al., Proc. 15th PVSEC, Shanghai, China, 2005, p. 35.Google Scholar
27 Shah, A. et al., Prog. in Photovolt: Res. Appl. 12, 113 (2004).Google Scholar
28 Meier, J., Spitznagel, J., Kroll, U., Bucher, C., Fay, S., Moriarty, T., Shah, A., Thin Solid Films 451-542, 518 (2004).Google Scholar
29 Krc, J., Zeman, M., Campa, A., Smole, F., Topic, M., Mater. Res. Soc. Proc. 910, Warrendale, PA, 2006, A25.1.Google Scholar
30 Selvan, J.A. Anna, Delahoy, A.E., Guo, S., Li, Y., Proc. 14th PVSEC, Bangkok, Thailand, 2004, p. 179.Google Scholar
31 Kondo, M. et al., Proc. 15th PVSEC, Shanghai, China (2005), 43–4.Google Scholar