Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-13T03:55:11.179Z Has data issue: false hasContentIssue false

Electrical and Esr Studies of Lithium Manganese Oxide Spinels

Published online by Cambridge University Press:  10 February 2011

C. Julien
Affiliation:
Laboratoire des Milieux Désordonnés et Hétérogénes, UMR 7603, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris 05, France
F. Gendron
Affiliation:
Laboratoire des Milieux Désordonnés et Hétérogénes, UMR 7603, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris 05, France
S. Ziolkiewicz
Affiliation:
Laboratoire des Milieux Désordonnés et Hétérogénes, UMR 7603, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris 05, France
G.A. Nazri
Affiliation:
Physics and Physical Chemistry Department, RCEL, General Motors R&D Center, Warren, MI 48090, USA
Get access

Abstract

We report electrical properties of the lithium manganospinel LiMn2 O 4 and its delithiated/lithiated forms, Li1−x−∂Mn2−∂O4 with 0.0≤x≤0.4 and 0.00≤∂0.18. The electrical conductivity has been determined from d.c. measurements as a function of temperature and lithium content in the host lattice. LiMn2O4 exhibits a phase transition in the vicinity of 280 K, which disappears in the lithium-rich samples. Electrical data are analysed using the model of small-polaron transport. ESR spectroscopy has been applied to identify the singular structural features. Investigations as a function of temperature show a reliable determination of the modifications in the cationic sublattice and of the lithium overstoichiometry. The hopping conductivity mechanism between the Mn3+ and Mn4+ sites gives a coherent explanation for the observed ESR signal of cyclotron resonance.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Julien, C., and Nazri, G.A., Solid State Batteries: Materials Design and Optimization (Kluwer, Boston, 1994).Google Scholar
2. Thackeray, M.M., Johnson, P., Piciotto, L. de, Bruce, P.G. and Goodenough, J.B., Mater. Res. Bull. 19 (1984) 179.Google Scholar
3. Guyomard, D. and Tarascon, J.M., J. Electrochem. Soc. 139 (1992) 937.Google Scholar
4. Ohzuku, T., Kitagawa, M. and Hirai, T., J. Electrochem. Soc. 137 (1990) 769.Google Scholar
5. Reimers, J.N. and Dahn, J.R., J. Electrochem. Soc. 139 (1992) 2091.Google Scholar
6. Kanamura, K., Naito, H., Yao, T. and Takehara, Z., J. Mater. Chem. 6 (1996) 33.Google Scholar
7. Sanchez, L., Farcy, J., Pereira-Ramos, J.P., Hernan, L., Morales, J. and Tirado, J.L., J. Mater. Chem. 6 (1996) 37.Google Scholar
8. Julien, C., Rougier, A. and Nazri, G.A., Mater. Res. Soc. Symp. Proc. 453 (1997) 647.Google Scholar
9. Sheftel, I.T. and Pavlotskii, Y.V., Inorg. Mater. 2 (1966) 782.Google Scholar
10. Goodenough, J.B., Manthiran, A. and Wnetrzewski, B., J. Power Sources, 43–44 (1993) 269.Google Scholar
11. Pistoia, G., Zane, D. and Zhang, Y., J. Electrochem. Soc. 142 (1995) 2551.Google Scholar
12. Mott, N.F., J. Non-Crystal. Solids 1 (1968) 1.Google Scholar
13. Austin, I.G. and Mott, N.F., Adv. Phys. 18 (1969) 41.Google Scholar
14. Yamada, A. and Tanaka, M., Mater. Res. Bull. 30 (1995) 715.Google Scholar
15. Yamada, A., J. Solid State Chem. 122 (1996) 160.Google Scholar
16. Gummow, R.J., deKock, A. and Thackeray, M.M., Solid State lonics 69 (1994) 59.Google Scholar
17. Yamada, A., Miura, K., Hinokuma, K. and Tanaka, M., J. Electrochem. Soc. 142 (1995) 2149.Google Scholar
18. Miura, K., Yamada, A. and Tanaka, M., Electrochim. Acta 41 (1996) 249.Google Scholar
19. Zomeren, A.A van, Kelder, E.M., Schoonman, J. and Eck, E.R.H. van, Electrochem. Soc. Proc. 97–24 (1997) 158.Google Scholar
20. Massaroti, V., Capsoni, D., Bini, M., Azzoni, C.B. and Paleari, A., J. Solid State Chem. 128, (1997)80.Google Scholar
21. Oyang, B., Greenbaum, S.G., Boer, M. den, Massuco, A., McLin, M., Shi, J. and Fauteux, D., Mat. Res. Soc. Symp. Proc. 369 (1995) 29.Google Scholar
22. Clerjaud, B., Gélineau, A., Galland, D. and Saminadayar, K., Phys. Rev. B, 19 (1979) 2056.Google Scholar
23. Gerritsen, H.J and Sabisky, E.S., Phys. Rev. 138 (1963) 1507.Google Scholar
24. Henderson, B. and Hall, T.P.P, Proc. Phys. Soc. 90 (1967) 511.Google Scholar
25. Abragam, A. and Bleaney, B., Electron paramagnetic resonance of transition ions, Clarendon, Oxford 1970, p. 430.Google Scholar