Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-19T00:27:33.573Z Has data issue: false hasContentIssue false

Electric Transport Properties of a NiTi Shape Memory Alloy Under Applied Stress.

Published online by Cambridge University Press:  25 February 2011

G. Airoldi
Affiliation:
N.F.H-Dipartimento di Fisica, Universita' di Milano, Via Celoria 16, 20133 Milano, Italy
G. Riva
Affiliation:
N.F.H-Dipartimento di Fisica, Universita' di Milano, Via Celoria 16, 20133 Milano, Italy
T. Ranucci
Affiliation:
I.T.M.-C.N.R.-Area della Ricerca di Milano, Via Bassini 15, 20133 Milano, Italy
B. Vicentini
Affiliation:
I.T.M.-C.N.R.-Area della Ricerca di Milano, Via Bassini 15, 20133 Milano, Italy
Get access

Abstract

It is well known that mechanical properties of Shape Memory Alloys are strongly dependent upon the test temperature (T) respect to transformation temperatures: the stress-strain curves however hinder the true deformation processes acting.

Electrical resistance(ER), a physical property sensibly affected by electronic structure modifications, traditionally used to follow the growth of thermal martensite, is here investigated to follow the modifications of a NiTi alloy, in an initial single phase structure, under applied stress. ER measurements are here detected with the aim to distinguish different deformation processes at four test temperatures Ti (i=1,..,4): in martensitic phase,either at T1 <Mf or at T2<As within the hysteresis cycle; in parent phase, either at Af<T3 or at Ms<T4 within the hysteresis cycle, where T2 = T4. Results are examined in comparison with previous obtained data and discussed at the light of imprinted deformation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Wayman, C.M., Cornelis, I., Scripta Met. 6,115(1972).CrossRefGoogle Scholar
[2] Sandrock, G.P., Perkins, A.J., Hehemann, R.F., Metall.Trans. 9,2769(1968).Google Scholar
[3] Miyazaki, S., Igo, Y., Otsuka, K., Acta Metall. 34,2045(1986).Google Scholar
[4] Airoldi, G., Bellini, G., diFrancesco, C., J.Phys.F:Met.Phys. 4,1983(1984).Google Scholar
[5] Airoldi, G., Riva, G., Rivolta, B., in “Shape Memory Materials”, edited by Doyama, M., Somiya, S., Chang, R.P.H. (Mater.Res.Soc., Proc.Int.l.Mtg.Adv.Mats.9,Pittsburg,Pa,1989)pp.105110.Google Scholar
[6] Miyazaki, S., Ohmi, Y., Otsuka, K., Suzuki, Y., J.de Physique, Coll.C4, Suppl.12,43,255(1982).Google Scholar
[7] Saburi, T., Tatsumi, T., Nenno, S., J.de Physique, Coll.C4, Suppl.12,43,261(1982).Google Scholar
[8] Honma, T., Matsumoto, M., Shugo, Y., Nishida, M., Yamazaki, I. in “Titanium '80”” edited by Kimura, H. and Izumi, O. (Kyoto, 1980),p.1455.Google Scholar
[9] Nishida, M., Honma, T., Scripta Met. 18,1293(1984).CrossRefGoogle Scholar
[10]Hummel, R.E., Koger, J.W., Pasupathi, V., Trans.Met.Soc.AIME 242,249(1968).Google Scholar
[11]Airoldi, G., Ranucci, T., Riva, G., Jour.de Phys.,(1991), to be published.Google Scholar
[12]Miyazaki, S., Otsuka, K., Suzuki, Y., Scripta Met. 15,287(1981).Google Scholar