Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-25T01:06:12.306Z Has data issue: false hasContentIssue false

Electric Field-Assisted Positioning of Neurons on Pt Microelectrode Arrays

Published online by Cambridge University Press:  15 February 2011

Shalini Prasad
Affiliation:
Department of Electrical Engineering
Mo Yang
Affiliation:
Department of Mechanical Engineering
Xuan Zhang
Affiliation:
Department of Mechanical Engineering
Yingchun Ni
Affiliation:
Department of Cell Biology and Neuroscience
Vladimir Parpura
Affiliation:
Department of Cell Biology and Neuroscience
Cengiz. S. Ozkan
Affiliation:
Department of Mechanical Engineering
Mihrimah Ozkan
Affiliation:
Department of Electrical Engineering Department of Chemical and Environmental Engineering University of California Riverside, CA-92521
Get access

Abstract

Characterization of electrical activity of individual neurons is the fundamental step in understanding the functioning of the nervous system. Single cell electrical activity at various stages of cell development is essential to accurately determine in in-vivo conditions the position of a cell based on the procured electrical activity. Understanding memory formation and development translates to changes in the electrical activity of individual neurons. Hence, there is an enormous need to develop novel ways for isolating and positioning individual neurons over single recording sites. To this end, we used a 3x3 multiple microelectrode array system to spatially arrange neurons by applying a gradient AC field. We characterized the electric field distribution inside our test platform by using two dimensiona l finite element modeling (FEM) and determined the location of neurons over the electrode array. Dielectrophoretic AC fields were utilized to separate the neurons from the glial cells and to position the neurons over the electrodes. The neurons were obtained from 0-2-day-old rat (Sprague-Dawley) pups. The technique of using electric fields to achieve single neuron patterning has implications in neural engineering, elucidating a new and simpler method to develop and study neuronal activity as compared to conventional microelectrode array techniques.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bear, M.F., Barry, C.W., Paradiso, M.A., Neuroscience: Exploring the Brain, (Lippincott, Williams and Wilkins, Baltimore, MD, 2nd ed. 1999).Pg 147 Google Scholar
2. Cheng, J., Sheldon, E.L., Wu, L., Uribe, A., Gerrue, L.O., Carrino, J., Heller, M.J., and O'Connell, J.P., Nat Biotechnol, 16, 541546. (1998).Google Scholar
3. Dow, J.A.T, Clark, P., Connolly, P.K, Curtis, A.S.G and Wilkinson, C.D.W.., J.Cell Sci. Suppl. 8, 5579. (1987).Google Scholar
4. Gascoyne, P.R.C. and Vykoukal, J., Electrophoresis, 23, 19731983. (2002).Google Scholar
5. Gross, G.W. and Lucas, J.H.., J. Electrophys. Tech. 9, 5569. (1982).Google Scholar
6. Gross, G.W., IEEE Trans Biomed. Eng. 26, 273278. (1979).Google Scholar
7. Gross, G.W., Rieske, E., Kreutzberg, G.W. and Meyer, A., Neurosci. Lett. 6, 101106. (1977).Google Scholar
8. Hammarback, J.A, Palm, S.L., Furcht, L.T., and Letourneau, P.C.., J.Neurosci Res. 13, 213220. (1985).Google Scholar
9. Hirono, T., Torimitsu, K., Kawana, A., Fukuda, J.., Brain Res. 446, 189194. (1988).Google Scholar
10. Huang, Y., Joo, S., Duhon, M., Heller, M., Wallace, B., and Xu, X., Anal. Chem. 74, 33623371. (2002).Google Scholar
11. Jimbo, Y. and Kawana, A.., Bioelectrochem and Bioenergetics 29, 193204. (1992).Google Scholar
12. Jimbo, Y., Kawana, A. , Y., Parodi, P., and Torre, V., Biol Cybern 83, 120. (2000).Google Scholar
13. Jimbo, Y., Robisnson, H.P.C., Kawana, A., IEEE Trans Biomed Eng, 40(8), 804810. (1993).Google Scholar
14. Kleinfeld, D., Kalher, K.H. and Hockberger, P.E.., J.Neurosci, 8, 40984120. (1988).Google Scholar
15. Knopfel, E., Guatteo, L., Bemardi, G. and Mercuri, N.B., European J Neurosci, 10, 19261929.(1998).Google Scholar
16. Nelson, P.G., Fields, R.D., Chang, Y., and Neale, E.A.., J.Neubiol. 21, 138156. (1990).Google Scholar
17. Nisch, W., Böck, J., Egert, U., Hämmerle, H. and Mohr, A.., Biosensors and Bioelectronics. 9, 737–74.(1994).Google Scholar
18. Novak, J.L. and Wheeler, B.C., Neurosci, J.. Methods 23, 149159. (1988).Google Scholar
19. Pine, J. and Gilbert, J.. Studies Neurosci. Abst. 8, 670686. (1982).Google Scholar
20. Pohl, H.A., Dielectrophoresis, (Cambrige University, Press, 1978).Google Scholar
21. Rakovic, D., Tomaŝevic, M., Jovanov, E., Radivojevic, V., Ŝukovic, P., Martinovic, Z., Carc, M..Google Scholar
22. Radenovic, M., Jovanovic-Ignjatic, Z., and Ŝkaric, L., Informatica, 23(3), 359412,(1999).Google Scholar
23. Stoppini, L., Duport, S. and Corrèges, P.L., J. Neurosci. Meth. 72, 2333. (1997).Google Scholar
24. Torimitsu, K. , K and Kawana, A.., Dev Brain Res. 51, 128131. (1990).Google Scholar
25. Wang, X.B., Huang, Y., Gascoyne, P.R.C, and Becker, F.F., IEEE Trans Ind Appl, 33(3), 660668. (1997).Google Scholar