Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-18T02:33:55.989Z Has data issue: false hasContentIssue false

Effects of Sulfur Concentration on the Electron Field Emission Properties of Nanocrystalline Carbon Thin Films

Published online by Cambridge University Press:  21 March 2011

S. Gupta
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, PO Box 23343, PR00931, USA
B. R. Weiner
Affiliation:
Department of Chemistry, University of Puerto Rico, San Juan, PO Box 23346, PR00931, USA
B. L. Weiss
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, PO Box 23343, PR00931, USA
G. Morell
Affiliation:
Department of Physical Sciences, University of Puerto Rico, San Juan, PO Box 23323, PR00931, USA
Get access

Abstract

The electron field emission properties of sulfur-assisted nanocrystalline carbon (n-C: S) thin films grown on molybdenum substrates by hot-filament CVD technique using methane-hydrogen (CH4/H2) and hydrogen sulfide-hydrogen (H2S/H2) gas mixtures were investigated. The field emission properties of the S-assisted films are reported as a function of sulfur concentration. The incorporation of S caused structural and microstructural changes that were characterized with SEM, AFM and Raman spectroscopy (RS). The S-assisted films show smoother surfaces and smaller grains than those grown without. The lowest turn-on field measured was around 4.5 – 5.0 V/μm films grown with 500 ppm of hydrogen sulfide and at 900 °C. The electron field emission properties of S-assisted films were also compared to those grown without sulfur (i.e., intrinsic). An inverse correlation between the threshold field (Ec) and sulfur concentration was found. These finding are attributed to defect induced states within the electronic band structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Spindt, C. A., Brodie, I., Humphrey, L. and Westerberg, E. R., J. Appl. Phys. 47, 5248 (1976).Google Scholar
2. Castellano, J. A., in Handbook of Display Technology (Academic Press, New York, 1992).Google Scholar
3. Jaskie, J. E., Mater. Res. Bull. 21, 59 (1996).Google Scholar
4. Robertson, J., Mater. Res. Soc. Symp. Proc. 509, 83 (1998) and references therein.Google Scholar
5. Hart, A., Satyanarayana, B. S., Milne, W. I. and Robertson, J., Diamond and Related Materials 8, 809 (1999).Google Scholar
6. Karabutov, A. V., Konov, V. I., Pimenov, S. M., Obraztsova, E. D., Frolov, V. D., Pereverzev, V. G. and Smolin, A. A., J. Wide Bandgap Materials 7, 68 (1999).Google Scholar
7. Himpsel, F. J., Knapp, J. A., Van Vechten, J. A. and Eastman, D. E., Phys. Rev. B 20, 624627 (1979);Google Scholar
Van der Weide, J. and Nemanich, R. J., Appl. Phys. Lett. 62, 1878 (1993).Google Scholar
8. Shin, J. Y., Baik, H. K. and Song, K. M., J. Appl. Phys. 87, 7508 (2000).Google Scholar
9. Amartunga, G. A. J., Silva, S. R. P., Appl. Phys. Lett. 68, 2529 (1996);Google Scholar
Geis, M. W., Efremow, N.N., Woodhouse, J.D., and McAleese, M.D., IEEE Trans. ED Lett. 12, 456 (1991).Google Scholar
10. Okano, K., Koizumi, S., Silva, S. R. P., and Amartunga, G. A. J., Nature, 381, 140 (1996).Google Scholar
11. Wang, C., Garcia, A., Ingran, D. C., Lake, M. and Kordesch, M. E., Electronics Lett. 27, 1459 (1991).Google Scholar
12. Tallin, A. A., Pan, L. S., McCarty, K. F., Felter, T. E., Doerr, H. J., Bunshah, R. F., Appl. Phys. Lett. 69, 3842 (1996).Google Scholar
13. Coll, B. F., Jaskie, J. E., Markahm, J. L., Menu, E. P., Talin, A. A., VonAllmen, P., Mater. Res. Soc. Symp. Proc. 498, xx (1998).Google Scholar
14. Shiao, J., Zorman, C. A. and Hoffman, R. W., Mater. Res. Soc. Symp. Proc. 349, 465 (1994).Google Scholar
15. Kalish, R., Reznik, A., Uzan-Saguy, C. and Cytermann, C., Appl. Phys. Lett. 76, 757 (2000) and references therein.Google Scholar
16. Dandy, D. S., Thin Solid Films 381, 1 (2001).Google Scholar
17. Gamo, M. N., Xiao, C., Zhang, Y., Yasu, E., Kikucji, Y., Sakaguchi, I., Suzuki, T., Sato, Y. and Ando, T., Thin Solid Films 382, 113 (2001).Google Scholar
18. Gupta, S., Weiner, B. R. and Morell, G., Diamond and Related Materials 2001 (in Press);Google Scholar
Gupta, S., Weiss, B. L., Weiner, B. R. and Morell, G., Mater. Res. Soc. Symp. Proc. xx (2001) (to be published).Google Scholar
19. Groning, O., Kuttel, O. M., Groning, P., and Schlapbach, L., J. Vac. Sci. Technol. B 17, 1970 (1999) and references therein.Google Scholar
20. Weiss, B. L., Badzian, A., Pilione, L., Badzian, T. and Drawl, W., J. Vac. Sci. Technol. B 16, 681 (1998).Google Scholar
21. Nemanich, R. J., Glass, J. T., Luckovsky, G., and Sroder, R. E., J. Vac. Sci. Technol. A 6, 1783 (1988).Google Scholar
22. Ferrari, A. C. and Robertson, J., Phys. Rev. B 61, 14095 (2000).Google Scholar
23. Bhattacharyya, S., Walzer, K., Hietschold, H. and Richter, F., J. Appl. Phys. 89, 1619 (2001).Google Scholar
24. Shiao, J., Zorman, C. A. and Hoffman, R. W., Mater. Res. Soc. Symp. Proc. 349, 465 (1994).Google Scholar
25. Haubner, R., Bohr, S. and Lux, B., Diamond and Related Materials 8, 171 (2000).Google Scholar
26. Shin, I. H. and Lee, T. D., J. Vac. Sci. Technol. B 18, 1027 (2000).Google Scholar
27. Zhu, W., Kochanski, G. P. and Jin, S., Mater. Res. Soc. Symp. Proc. 509, 5358 (1998);Google Scholar
Zhu, W., Kochanski, G. P., Jin, S. and Seibles, L., J. Vac. Sci. Technol. B 14, 2011 (1996).Google Scholar
28. Xu, N. S., Chen, J. and Deng, S. Z., Appl. Phys. Lett. 76, 2463 (2000).Google Scholar
29. Pananakis, G., Ghibando, G., Kies, R. and Papadas, C., J. Appl. Phys. 78, 2635 (1995).Google Scholar